Skip to content
This repository has been archived by the owner on Nov 21, 2022. It is now read-only.

Various fixes based on messages #265

Merged
merged 2 commits into from
Jun 23, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/tasks/nlp/token_classification.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ Training
revision="master",
tokenizer=tokenizer,
)
model = TokenClassificationTransformer(pretrained_model_name_or_path="bert-base-uncased", labels=dm.labels)
model = TokenClassificationTransformer(pretrained_model_name_or_path="bert-base-uncased", labels=dm.num_classes)
trainer = pl.Trainer(accelerator="auto", devices="auto", max_epochs=1)

trainer.fit(model, dm)
Expand Down
2 changes: 1 addition & 1 deletion examples/token_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
revision="master",
tokenizer=tokenizer,
)
model = TokenClassificationTransformer(pretrained_model_name_or_path="bert-base-uncased", labels=dm.labels)
model = TokenClassificationTransformer(pretrained_model_name_or_path="bert-base-uncased", labels=dm.num_classes)
trainer = pl.Trainer(accelerator="auto", devices="auto", max_epochs=1)

trainer.fit(model, dm)
3 changes: 2 additions & 1 deletion examples/translation_wmt.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from lightning_transformers.task.nlp.translation import TranslationTransformer, WMT16TranslationDataModule

if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="t5-base")
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="t5-base", model_max_length=512)
model = TranslationTransformer(
pretrained_model_name_or_path="t5-base",
n_gram=4,
Expand All @@ -20,6 +20,7 @@
target_language="ro",
max_source_length=128,
max_target_length=128,
padding="max_length",
tokenizer=tokenizer,
)
trainer = pl.Trainer(accelerator="auto", devices="auto", max_epochs=1)
Expand Down
9 changes: 0 additions & 9 deletions lightning_transformers/core/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,12 +212,3 @@ def predict_dataloader(self) -> Optional[DataLoader]:
@property
def collate_fn(self) -> Optional[Callable]:
return None

@property
def model_data_kwargs(self) -> Dict:
"""Override to provide the model with additional kwargs.

This is useful to provide the number of classes/pixels to the model or any other data specific args
Returns: Dict of args
"""
return {}
1 change: 0 additions & 1 deletion lightning_transformers/core/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@ class TaskTransformer(pl.LightningModule):
pretrained_model_name_or_path: Huggingface model to use if backbone config not passed.
tokenizer: The pre-trained tokenizer.
pipeline_kwargs: Arguments required for the HuggingFace inference pipeline class.
**model_data_kwargs: Arguments passed from the data module to the class.
"""

def __init__(
Expand Down
21 changes: 11 additions & 10 deletions lightning_transformers/core/seq2seq/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,9 @@ class Seq2SeqDataModule(TransformerDataModule):
def __init__(
self, *args, max_target_length: int = 128, max_source_length: int = 1024, padding: str = "longest", **kwargs
) -> None:
super().__init__(*args, **kwargs)
super().__init__(*args, padding=padding, **kwargs)
self.max_target_length = max_target_length
self.max_source_length = max_source_length
self.padding = padding

def process_data(self, dataset: Dataset, stage: Optional[str] = None) -> Dataset:
src_text_column_name, tgt_text_column_name = self.source_target_column_names
Expand Down Expand Up @@ -60,14 +59,16 @@ def convert_to_features(
src_text_column_name: str,
tgt_text_column_name: str,
):
encoded_results = tokenizer.prepare_seq2seq_batch(
src_texts=examples[src_text_column_name],
tgt_texts=examples[tgt_text_column_name],
max_length=max_source_length,
max_target_length=max_target_length,
padding=padding,
)
return encoded_results
inputs = examples[src_text_column_name]
targets = examples[tgt_text_column_name]
model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)

# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

model_inputs["labels"] = labels["input_ids"]
return model_inputs

@property
def collate_fn(self) -> Callable:
Expand Down
5 changes: 0 additions & 5 deletions lightning_transformers/task/nlp/multiple_choice/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict

from transformers import default_data_collator

Expand All @@ -35,7 +34,3 @@ def collate_fn(self) -> callable:
@property
def num_classes(self) -> int:
raise NotImplementedError

@property
def model_data_kwargs(self) -> Dict[str, int]:
return {"num_labels": self.num_classes}
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
from typing import Any, List, Optional

from datasets import ClassLabel, Dataset
from pytorch_lightning.utilities import rank_zero_warn
Expand Down Expand Up @@ -53,10 +53,6 @@ def num_classes(self) -> int:
self.setup("fit")
return self.labels.num_classes

@property
def model_data_kwargs(self) -> Dict[str, int]:
return {"num_labels": self.num_classes}

@staticmethod
def convert_to_features(
example_batch: Any, _, tokenizer: PreTrainedTokenizerBase, input_feature_fields: List[str], **tokenizer_kwargs
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Any, Callable, Dict, Optional
from typing import Any, Callable, Optional

from datasets import ClassLabel, Dataset
from pytorch_lightning.utilities import rank_zero_warn
Expand Down Expand Up @@ -90,10 +90,6 @@ def num_classes(self) -> int:
self.setup("fit")
return len(self.labels)

@property
def model_data_kwargs(self) -> Dict[str, Any]:
return {"labels": self.labels}

@staticmethod
def convert_to_features(
examples: Any,
Expand Down
19 changes: 8 additions & 11 deletions lightning_transformers/task/nlp/translation/datasets/wmt16.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,16 +32,13 @@ def convert_to_features(
src_text_column_name: str,
tgt_text_column_name: str,
):
translations = examples["translation"] # Extract translations from dict
inputs = [ex[src_text_column_name] for ex in examples["translation"]]
targets = [ex[tgt_text_column_name] for ex in examples["translation"]]
model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)

def extract_text(lang):
return [text[lang] for text in translations]
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

encoded_results = tokenizer.prepare_seq2seq_batch(
src_texts=extract_text(src_text_column_name),
tgt_texts=extract_text(tgt_text_column_name),
max_length=max_source_length,
max_target_length=max_target_length,
padding=padding,
)
return encoded_results
model_inputs["labels"] = labels["input_ids"]
return model_inputs
2 changes: 1 addition & 1 deletion lightning_transformers/task/nlp/translation/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def compute_generate_metrics(self, batch, prefix):
tgt_lns = self.tokenize_labels(batch["labels"])
pred_lns = self.generate(batch["input_ids"], batch["attention_mask"])
# wrap targets in list as score expects a list of potential references
result = self.bleu(pred_lns, tgt_lns)
result = self.bleu(preds=pred_lns, target=tgt_lns)
self.log(f"{prefix}_bleu_score", result, on_step=False, on_epoch=True, prog_bar=True)

def configure_metrics(self, stage: str):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
from typing import Any, Optional

from datasets import ClassLabel, Dataset
from pytorch_lightning.utilities import rank_zero_warn
Expand Down Expand Up @@ -52,7 +52,3 @@ def num_classes(self) -> int:
rank_zero_warn("Labels has not been set, calling `setup('fit')`.")
self.setup("fit")
return self.labels.num_classes

@property
def model_data_kwargs(self) -> Dict[str, int]:
return {"num_labels": self.num_classes}