Skip to content
This repository has been archived by the owner on Oct 9, 2023. It is now read-only.

fix from_data_frame factory method with prediction df #1088

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Fixed a bug where passing the `val_split` to the `DataModule` would not have the desired effect ([#1079](https://github.com/PyTorchLightning/lightning-flash/pull/1079))

- Fixed a bug where passing `predict_data_frame` to `ImageClassificationData.from_data_frame` raised an error ([#1088](https://github.com/PyTorchLightning/lightning-flash/pull/1088))

### Removed

## [0.6.0] - 2021-13-12
Expand Down
2 changes: 1 addition & 1 deletion flash/image/classification/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,7 +217,7 @@ def from_data_frame(
train_data = (train_data_frame, input_field, target_fields, train_images_root, train_resolver)
val_data = (val_data_frame, input_field, target_fields, val_images_root, val_resolver)
test_data = (test_data_frame, input_field, target_fields, test_images_root, test_resolver)
predict_data = (predict_data_frame, input_field, predict_images_root, predict_resolver)
predict_data = (predict_data_frame, input_field, None, predict_images_root, predict_resolver)

return cls(
input_cls(RunningStage.TRAINING, *train_data, transform=train_transform, **ds_kw),
Expand Down
53 changes: 53 additions & 0 deletions tests/image/classification/test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from typing import Any, List, Tuple

import numpy as np
import pandas as pd
import pytest
import torch
import torch.nn as nn
Expand Down Expand Up @@ -84,6 +85,58 @@ def test_from_filepaths_smoke(tmpdir):
assert sorted(list(labels.numpy())) == [1, 2]


@pytest.mark.skipif(not _IMAGE_TESTING, reason="image libraries aren't installed.")
def test_from_data_frame_smoke(tmpdir):
tmpdir = Path(tmpdir)

df = pd.DataFrame(
{"file": ["train.png", "valid.png", "test.png"], "split": ["train", "valid", "test"], "target": [0, 1, 1]}
)

[_rand_image().save(tmpdir / row.file) for i, row in df.iterrows()]

img_data = ImageClassificationData.from_data_frame(
"file",
"target",
train_images_root=str(tmpdir),
val_images_root=str(tmpdir),
test_images_root=str(tmpdir),
train_data_frame=df[df.split == "train"],
val_data_frame=df[df.split == "valid"],
test_data_frame=df[df.split == "test"],
predict_images_root=str(tmpdir),
batch_size=1,
predict_data_frame=df,
)

assert img_data.train_dataloader() is not None
assert img_data.val_dataloader() is not None
assert img_data.test_dataloader() is not None
assert img_data.predict_dataloader() is not None

data = next(iter(img_data.train_dataloader()))
imgs, labels = data["input"], data["target"]
assert imgs.shape == (1, 3, 196, 196)
assert labels.shape == (1,)
assert sorted(list(labels.numpy())) == [0]

data = next(iter(img_data.val_dataloader()))
imgs, labels = data["input"], data["target"]
assert imgs.shape == (1, 3, 196, 196)
assert labels.shape == (1,)
assert sorted(list(labels.numpy())) == [1]

data = next(iter(img_data.test_dataloader()))
imgs, labels = data["input"], data["target"]
assert imgs.shape == (1, 3, 196, 196)
assert labels.shape == (1,)
assert sorted(list(labels.numpy())) == [1]

data = next(iter(img_data.predict_dataloader()))
imgs = data["input"]
assert imgs.shape == (1, 3, 196, 196)


@pytest.mark.skipif(not _IMAGE_TESTING, reason="image libraries aren't installed.")
def test_from_filepaths_list_image_paths(tmpdir):
tmpdir = Path(tmpdir)
Expand Down