Run • Lightning AI • Docs
Use TLDR to pre-train or fine-tune a large language model for text summarization, with as many parameters as you want (up to billions!).
You can do this:
- using multiple GPUs
- across multiple machines
- on your own data
- all without any infrastructure hassle!
All handled easily with the Lightning Apps framework.
To run TLDR, paste the following code snippet in a file app.py
:
# !pip install git+https://github.com/Lightning-AI/LAI-TLDR-Component git+https://github.com/Lightning-AI/lightning-LLMs
# !curl https://raw.githubusercontent.com/Shivanandroy/T5-Finetuning-PyTorch/main/data/news_summary.csv --create-dirs -o ${HOME}/data/summary/news.csv -C -
import lightning as L
import os
from transformers import T5ForConditionalGeneration, T5TokenizerFast as T5Tokenizer
from lit_llms.tensorboard import (
DriveTensorBoardLogger,
MultiNodeLightningTrainerWithTensorboard,
)
from lai_tldr import TLDRDataModule, default_callbacks, predict, TLDRLightningModule
class TLDR(L.LightningWork):
"""Finetune on a text summarization task."""
def __init__(self, tb_drive, **kwargs):
super().__init__(**kwargs)
self.tensorboard_drive = tb_drive
def run(self):
# for huggingface/transformers
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# --------------------
# CONFIGURE YOUR MODEL
# --------------------
model_type = "t5-base"
t5_tokenizer = T5Tokenizer.from_pretrained(model_type)
t5_model = T5ForConditionalGeneration.from_pretrained(
model_type, return_dict=True
)
lightning_module = TLDRLightningModule(t5_model, tokenizer=t5_tokenizer)
# -------------------
# CONFIGURE YOUR DATA
# -------------------
data_module = TLDRDataModule(
os.path.expanduser("~/data/summary/news.csv"), t5_tokenizer
)
# -----------------
# RUN YOUR TRAINING
# -----------------
strategy = (
"deepspeed_stage_3_offload"
if L.app.utilities.cloud.is_running_in_cloud()
else "ddp"
)
trainer = L.Trainer(
max_epochs=2,
limit_train_batches=250,
precision=16,
strategy=strategy,
callbacks=default_callbacks(),
log_every_n_steps=1,
logger=DriveTensorBoardLogger(save_dir=".", drive=self.tensorboard_drive),
)
trainer.fit(lightning_module, data_module)
if trainer.global_rank == 0:
sample_text = (
"summarize: ML Ops platforms come in many flavors from platforms that train models to platforms "
"that label data and auto-retrain models. To build an ML Ops platform requires dozens of "
"engineers, multiple years and 10+ million in funding. The majority of that work will go into "
"infrastructure, multi-cloud, user management, consumption models, billing, and much more. "
"Build your platform with Lightning and launch in weeks not months. Focus on the workflow you want "
"to enable (label data then train models), Lightning will handle all the infrastructure, billing, "
"user management, and the other operational headaches."
)
predictions = predict(
lightning_module.to(trainer.strategy.root_device), sample_text
)
print("Input text:\n", sample_text)
print("Summarized text:\n", predictions[0])
app = L.LightningApp(
MultiNodeLightningTrainerWithTensorboard(
TLDR,
num_nodes=2,
cloud_compute=L.CloudCompute("gpu-fast-multi", disk_size=50),
)
)
lightning run app app.py --setup
lightning run app app.py --setup --cloud
Don't want to use the public cloud? Contact us at [email protected]
for early access to run on your private cluster (BYOC)!