Skip to content

Commit

Permalink
[pre-commit.ci] pre-commit suggestions (#375)
Browse files Browse the repository at this point in the history
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Jirka Borovec <[email protected]>
  • Loading branch information
pre-commit-ci[bot] and Borda authored Jan 9, 2025
1 parent 07911b9 commit 1997066
Show file tree
Hide file tree
Showing 9 changed files with 21 additions and 27 deletions.
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ ci:

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
rev: v5.0.0
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
Expand Down Expand Up @@ -45,7 +45,7 @@ repos:
args: ["--print-width=120"]

- repo: https://github.com/executablebooks/mdformat
rev: 0.7.17
rev: 0.7.21
hooks:
- id: mdformat
additional_dependencies:
Expand All @@ -55,7 +55,7 @@ repos:
args: ["--number"]

- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.5.0
rev: v0.8.6
hooks:
# try to fix what is possible
- id: ruff
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,13 +44,13 @@ The addition has to formed as new folder:
accelerator:
- CPU
```
- _\[optional\]_ requirements listed in `requirements.txt` in the particular folder (in case you need some other packaged then listed the parent folder)
- _[optional]_ requirements listed in `requirements.txt` in the particular folder (in case you need some other packaged then listed the parent folder)

## Using datasets

It is quite common to use some public or competition's dataset for your example.
We facilitate this via defining the data sources in the metafile.
There are two basic options, download a file from web or pul Kaggle dataset _\[Experimental\]_:
There are two basic options, download a file from web or pul Kaggle dataset _[Experimental]_:

```yaml
datasets:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ def plot_dists(val_dict, color="C0", xlabel=None, stat="count", use_kde=True):
kde=use_kde and ((val_dict[key].max() - val_dict[key].min()) > 1e-8),
) # Only plot kde if there is variance
hidden_dim_str = (
r"(%i $\to$ %i)" % (val_dict[key].shape[1], val_dict[key].shape[0]) if len(val_dict[key].shape) > 1 else ""
r"(%i $\to$ %i)" % (val_dict[key].shape[1], val_dict[key].shape[0]) if len(val_dict[key].shape) > 1 else "" # noqa: UP031
)
key_ax.set_title(f"{key} {hidden_dim_str}")
if xlabel is not None:
Expand Down
8 changes: 4 additions & 4 deletions course_UvA-DL/05-transformers-and-MH-attention/MHAttention.py
Original file line number Diff line number Diff line change
Expand Up @@ -633,8 +633,8 @@ def forward(self, x):
fig, ax = plt.subplots(2, 2, figsize=(12, 4))
ax = [a for a_list in ax for a in a_list]
for i in range(len(ax)):
ax[i].plot(np.arange(1, 17), pe[i, :16], color="C%i" % i, marker="o", markersize=6, markeredgecolor="black")
ax[i].set_title("Encoding in hidden dimension %i" % (i + 1))
ax[i].plot(np.arange(1, 17), pe[i, :16], color=f"C{i}", marker="o", markersize=6, markeredgecolor="black")
ax[i].set_title(f"Encoding in hidden dimension {i + 1}")
ax[i].set_xlabel("Position in sequence", fontsize=10)
ax[i].set_ylabel("Positional encoding", fontsize=10)
ax[i].set_xticks(np.arange(1, 17))
Expand Down Expand Up @@ -1088,7 +1088,7 @@ def plot_attention_maps(input_data, attn_maps, idx=0):
ax[row][column].set_xticklabels(input_data.tolist())
ax[row][column].set_yticks(list(range(seq_len)))
ax[row][column].set_yticklabels(input_data.tolist())
ax[row][column].set_title("Layer %i, Head %i" % (row + 1, column + 1))
ax[row][column].set_title(f"Layer {row + 1}, Head {column + 1}")
fig.subplots_adjust(hspace=0.5)
plt.show()

Expand Down Expand Up @@ -1590,7 +1590,7 @@ def visualize_prediction(idx):
visualize_prediction(mistakes[-1])
print("Probabilities:")
for i, p in enumerate(preds[mistakes[-1]].cpu().numpy()):
print("Image %i: %4.2f%%" % (i, 100.0 * p))
print(f"Image {i}: {100.0 * p:4.2f}%")

# %% [markdown]
# In this example, the model confuses a palm tree with a building, giving a probability of ~90% to image 2, and 8% to the actual anomaly.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -570,7 +570,7 @@ def on_epoch_end(self, trainer, pl_module):
grid = torchvision.utils.make_grid(
imgs_to_plot, nrow=imgs_to_plot.shape[0], normalize=True, value_range=(-1, 1)
)
trainer.logger.experiment.add_image("generation_%i" % i, grid, global_step=trainer.current_epoch)
trainer.logger.experiment.add_image(f"generation_{i}", grid, global_step=trainer.current_epoch)

def generate_imgs(self, pl_module):
pl_module.eval()
Expand Down
6 changes: 3 additions & 3 deletions course_UvA-DL/08-deep-autoencoders/notebook.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,7 +388,7 @@ def on_train_epoch_end(self, trainer, pl_module):
def train_cifar(latent_dim):
# Create a PyTorch Lightning trainer with the generation callback
trainer = pl.Trainer(
default_root_dir=os.path.join(CHECKPOINT_PATH, "cifar10_%i" % latent_dim),
default_root_dir=os.path.join(CHECKPOINT_PATH, f"cifar10_{latent_dim}"),
accelerator="auto",
devices=1,
max_epochs=500,
Expand All @@ -402,7 +402,7 @@ def train_cifar(latent_dim):
trainer.logger._default_hp_metric = None # Optional logging argument that we don't need

# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "cifar10_%i.ckpt" % latent_dim)
pretrained_filename = os.path.join(CHECKPOINT_PATH, f"cifar10_{latent_dim}.ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model, loading...")
model = Autoencoder.load_from_checkpoint(pretrained_filename)
Expand Down Expand Up @@ -475,7 +475,7 @@ def visualize_reconstructions(model, input_imgs):
grid = torchvision.utils.make_grid(imgs, nrow=4, normalize=True, value_range=(-1, 1))
grid = grid.permute(1, 2, 0)
plt.figure(figsize=(7, 4.5))
plt.title("Reconstructed from %i latents" % (model.hparams.latent_dim))
plt.title(f"Reconstructed from {model.hparams.latent_dim} latents")
plt.imshow(grid)
plt.axis("off")
plt.show()
Expand Down
4 changes: 2 additions & 2 deletions course_UvA-DL/09-normalizing-flows/NF.py
Original file line number Diff line number Diff line change
Expand Up @@ -512,7 +512,7 @@ def visualize_dequantization(quants, prior=None):
x_ticks = []
for v in np.unique(out):
indices = np.where(out == v)
color = to_rgb("C%i" % v)
color = to_rgb(f"C{v}")
plt.fill_between(inp[indices], prob[indices], np.zeros(indices[0].shape[0]), color=color + (0.5,), label=str(v))
plt.plot([inp[indices[0][0]]] * 2, [0, prob[indices[0][0]]], color=color)
plt.plot([inp[indices[0][-1]]] * 2, [0, prob[indices[0][-1]]], color=color)
Expand All @@ -525,7 +525,7 @@ def visualize_dequantization(quants, prior=None):
plt.xlim(inp.min(), inp.max())
plt.xlabel("z")
plt.ylabel("Probability")
plt.title("Dequantization distribution for %i discrete values" % quants)
plt.title(f"Dequantization distribution for {quants} discrete values")
plt.legend()
plt.show()
plt.close()
Expand Down
2 changes: 1 addition & 1 deletion course_UvA-DL/10-autoregressive-image-modeling/notebook.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@ def show_center_recep_field(img, out):
for l_idx in range(4):
vert_img = vert_conv(vert_img)
horiz_img = horiz_conv(horiz_img) + vert_img
print("Layer %i" % (l_idx + 2))
print(f"Layer {l_idx + 2}")
show_center_recep_field(inp_img, horiz_img)

# %% [markdown]
Expand Down
14 changes: 4 additions & 10 deletions course_UvA-DL/12-meta-learning/notebook.py
Original file line number Diff line number Diff line change
Expand Up @@ -703,10 +703,7 @@ def test_proto_net(model, dataset, data_feats=None, k_shot=4):
data_feats = None
for k in [2, 4, 8, 16, 32]:
protonet_accuracies[k], data_feats = test_proto_net(protonet_model, test_set, data_feats=data_feats, k_shot=k)
print(
"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)"
% (k, 100.0 * protonet_accuracies[k][0], 100 * protonet_accuracies[k][1])
)
print(f"Accuracy for k={k}: {100.0 * protonet_accuracies[k][0]:4.2f}% (+-{100 * protonet_accuracies[k][1]:4.2f}%)")

# %% [markdown]
# Before discussing the results above, let's first plot the accuracies over number of examples in the support set:
Expand Down Expand Up @@ -1174,8 +1171,7 @@ def test_protomaml(model, dataset, k_shot=4):

for k in protomaml_accuracies:
print(
"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)"
% (k, 100.0 * protomaml_accuracies[k][0], 100.0 * protomaml_accuracies[k][1])
f"Accuracy for k={k}: {100.0 * protomaml_accuracies[k][0]:4.2f}% (+-{100.0 * protomaml_accuracies[k][1]:4.2f}%)"
)

# %% [markdown]
Expand Down Expand Up @@ -1267,8 +1263,7 @@ def test_protomaml(model, dataset, k_shot=4):
protonet_model, svhn_fewshot_dataset, data_feats=data_feats, k_shot=k
)
print(
"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)"
% (k, 100.0 * protonet_svhn_accuracies[k][0], 100 * protonet_svhn_accuracies[k][1])
f"Accuracy for k={k}: {100.0 * protonet_svhn_accuracies[k][0]:4.2f}% (+-{100 * protonet_svhn_accuracies[k][1]:4.2f}%)"
)

# %% [markdown]
Expand All @@ -1295,8 +1290,7 @@ def test_protomaml(model, dataset, k_shot=4):

for k in protomaml_svhn_accuracies:
print(
"Accuracy for k=%i: %4.2f%% (+-%4.2f%%)"
% (k, 100.0 * protomaml_svhn_accuracies[k][0], 100.0 * protomaml_svhn_accuracies[k][1])
f"Accuracy for k={k}: {100.0 * protomaml_svhn_accuracies[k][0]:4.2f}% (+-{100.0 * protomaml_svhn_accuracies[k][1]:4.2f}%)"
)

# %% [markdown]
Expand Down

0 comments on commit 1997066

Please sign in to comment.