Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[App] Cold start proxy in autoscaler #16094

Merged
merged 32 commits into from
Dec 20, 2022
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
32 commits
Select commit Hold shift + click to select a range
4bafc59
wip clean up autoscaler ui
akihironitta Dec 15, 2022
1cefa05
Revert "wip clean up autoscaler ui"
akihironitta Dec 15, 2022
1e69092
Apply sherin's suggestion
akihironitta Dec 15, 2022
f9406cc
update example
akihironitta Dec 15, 2022
694627f
print endpoint in the log
akihironitta Dec 15, 2022
96b77ea
Fix import
akihironitta Dec 15, 2022
44cbec2
revert irrelevant change
akihironitta Dec 15, 2022
5d8af44
Merge branch 'master' into feat/autoscaler-ui
Dec 16, 2022
82fef89
Update src/lightning_app/components/auto_scaler.py
Dec 16, 2022
d8f4778
clean up
Dec 16, 2022
c7443b6
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 16, 2022
26f5f4b
test rename
Dec 16, 2022
1e7199c
Merge branch 'feat/autoscaler-ui' of github.com:Lightning-AI/lightnin…
Dec 16, 2022
4f3365c
Changelog
Dec 16, 2022
8501bd4
cold start proxy
Dec 16, 2022
0e2cee0
cold-start-proxy
Dec 16, 2022
7254e99
master
Dec 19, 2022
85e0205
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 19, 2022
5d04a21
Merge branch 'master' into cold-start-proxy
Dec 19, 2022
08643b2
Merge branch 'master' into cold-start-proxy
Dec 19, 2022
d62dd8b
merge
Dec 19, 2022
8dad987
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 19, 2022
901402a
Merge branch 'master' into cold-start-proxy
Dec 19, 2022
4d2596d
Merge branch 'master' into cold-start-proxy
Dec 20, 2022
eda6be5
docs and tests
Dec 20, 2022
b05c9aa
Merge branch 'master' into cold-start-proxy
Dec 20, 2022
5d727e8
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2022
21d325d
[App] Fixing auto batching in Autoscaler (#16110)
Dec 20, 2022
0af707f
Update src/lightning_app/components/serve/auto_scaler.py
Dec 20, 2022
77db466
changelog
Dec 20, 2022
6167943
better-doc
Dec 20, 2022
c1f7d70
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Dec 20, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 5 additions & 9 deletions examples/app_server_with_auto_scaler/app.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# ! pip install torch torchvision
from typing import Any, List
from typing import List

import torch
import torchvision
Expand All @@ -8,16 +8,12 @@
import lightning as L


class RequestModel(BaseModel):
image: str # bytecode


class BatchRequestModel(BaseModel):
inputs: List[RequestModel]
inputs: List[L.app.components.Image]


class BatchResponse(BaseModel):
outputs: List[Any]
outputs: List[L.app.components.Number]


class PyTorchServer(L.app.components.PythonServer):
Expand Down Expand Up @@ -81,8 +77,8 @@ def scale(self, replicas: int, metrics: dict) -> int:
max_replicas=4,
autoscale_interval=10,
endpoint="predict",
input_type=RequestModel,
output_type=Any,
input_type=L.app.components.Image,
output_type=L.app.components.Number,
timeout_batching=1,
max_batch_size=8,
)
Expand Down
2 changes: 2 additions & 0 deletions src/lightning_app/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

- Added partial support for fastapi `Request` annotation in `configure_api` handlers ([#16047](https://github.com/Lightning-AI/lightning/pull/16047))

- Added a nicer UI with URL and examples for the autoscaler component ([#16063](https://github.com/Lightning-AI/lightning/pull/16063))


### Changed

Expand Down
3 changes: 1 addition & 2 deletions src/lightning_app/components/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
from lightning_app.components.auto_scaler import AutoScaler
from lightning_app.components.database.client import DatabaseClient
from lightning_app.components.database.server import Database
from lightning_app.components.multi_node import (
Expand All @@ -10,7 +9,7 @@
from lightning_app.components.python.popen import PopenPythonScript
from lightning_app.components.python.tracer import Code, TracerPythonScript
from lightning_app.components.serve.gradio import ServeGradio
from lightning_app.components.serve.python_server import Image, Number, PythonServer
from lightning_app.components.serve.python_server import AutoScaler, Image, Number, PythonServer
from lightning_app.components.serve.serve import ModelInferenceAPI
from lightning_app.components.serve.streamlit import ServeStreamlit
from lightning_app.components.training import LightningTrainerScript, PyTorchLightningScriptRunner
Expand Down
4 changes: 2 additions & 2 deletions src/lightning_app/components/serve/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from lightning_app.components.serve.gradio import ServeGradio
from lightning_app.components.serve.python_server import Image, Number, PythonServer
from lightning_app.components.serve.python_server import AutoScaler, Image, Number, PythonServer
from lightning_app.components.serve.streamlit import ServeStreamlit

__all__ = ["ServeGradio", "ServeStreamlit", "PythonServer", "Image", "Number"]
__all__ = ["ServeGradio", "ServeStreamlit", "PythonServer", "Image", "Number", "AutoScaler"]
Original file line number Diff line number Diff line change
@@ -1,12 +1,13 @@
import asyncio
import inspect
import logging
import os
import secrets
import time
import uuid
from base64 import b64encode
from itertools import cycle
from typing import Any, Dict, List, Tuple, Type
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import requests
import uvicorn
Expand All @@ -15,11 +16,13 @@
from fastapi.responses import RedirectResponse
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from pydantic import BaseModel
from starlette.staticfiles import StaticFiles
from starlette.status import HTTP_401_UNAUTHORIZED

from lightning_app.core.flow import LightningFlow
from lightning_app.core.work import LightningWork
from lightning_app.utilities.app_helpers import Logger
from lightning_app.utilities.cloud import is_running_in_cloud
from lightning_app.utilities.imports import _is_aiohttp_available, requires
from lightning_app.utilities.packaging.cloud_compute import CloudCompute

Expand All @@ -30,7 +33,32 @@
logger = Logger(__name__)


def _raise_granular_exception(exception: Exception) -> None:
class ColdStartProxy:
def __init__(self, proxy_url):
self.proxy_url = proxy_url
self.proxy_timeout = 50
if not inspect.iscoroutinefunction(self.handle_request):
raise TypeError("handle_request must be an `async` function")

async def handle_request(self, request: BaseModel) -> Any:
try:
async with aiohttp.ClientSession() as session:
headers = {
"accept": "application/json",
"Content-Type": "application/json",
}
async with session.post(
self.proxy_url,
json=request.dict(),
timeout=self.proxy_timeout,
headers=headers,
) as response:
return await response.json()
except Exception as ex:
raise HTTPException(status_code=500, detail=f"Error in proxy: {ex}")


def _maybe_raise_granular_exception(exception: Exception) -> None:
"""Handle an exception from hitting the model servers."""
if not isinstance(exception, Exception):
return
Expand Down Expand Up @@ -114,20 +142,22 @@ class _LoadBalancer(LightningWork):
requests to be batched. In any case, requests are processed as soon as `max_batch_size` is reached.
timeout_keep_alive: The number of seconds until it closes Keep-Alive connections if no new data is received.
timeout_inference_request: The number of seconds to wait for inference.
\**kwargs: Arguments passed to :func:`LightningWork.init` like ``CloudCompute``, ``BuildConfig``, etc.
**kwargs: Arguments passed to :func:`LightningWork.init` like ``CloudCompute``, ``BuildConfig``, etc.
"""

@requires(["aiohttp"])
def __init__(
self,
input_type: BaseModel,
output_type: BaseModel,
input_type: Type[BaseModel],
output_type: Type[BaseModel],
endpoint: str,
max_batch_size: int = 8,
# all timeout args are in seconds
timeout_batching: int = 1,
timeout_batching: float = 1,
timeout_keep_alive: int = 60,
timeout_inference_request: int = 60,
work_name: Optional[str] = "API", # used for displaying the name in the UI
cold_start_proxy: Union[ColdStartProxy, str, None] = None,
**kwargs: Any,
) -> None:
super().__init__(cloud_compute=CloudCompute("default"), **kwargs)
Expand All @@ -142,12 +172,24 @@ def __init__(
self._batch = []
self._responses = {} # {request_id: response}
self._last_batch_sent = 0
self._work_name = work_name

if not endpoint.startswith("/"):
endpoint = "/" + endpoint

self.endpoint = endpoint

self._fastapi_app = None

self._cold_start_proxy = None
if cold_start_proxy:
if isinstance(cold_start_proxy, str):
self._cold_start_proxy = ColdStartProxy(proxy_url=cold_start_proxy)
elif isinstance(cold_start_proxy, ColdStartProxy):
self._cold_start_proxy = cold_start_proxy
else:
raise ValueError("cold_start_proxy must be of type ColdStartProxy or str")

async def send_batch(self, batch: List[Tuple[str, _BatchRequestModel]]):
server = next(self._iter) # round-robin
request_data: List[_LoadBalancer._input_type] = [b[1] for b in batch]
Expand Down Expand Up @@ -193,22 +235,40 @@ async def consumer(self):
self._last_batch_sent = time.time()

async def process_request(self, data: BaseModel):
if not self.servers:
if not self.servers and not self._cold_start_proxy:
raise HTTPException(500, "None of the workers are healthy!")

request_id = uuid.uuid4().hex
request: Tuple = (request_id, data)
self._batch.append(request)

# if no servers are available, proxy the request to cold start proxy handler
if not self.servers:
return await self._cold_start_proxy.handle_request(data)

# if out of capacity, proxy the request to cold start proxy handler
if not self._has_processing_capacity():
return await self._cold_start_proxy.handle_request(data)

# if we have capacity, process the request
self._batch.append((request_id, data))
while True:
await asyncio.sleep(0.05)

if request_id in self._responses:
result = self._responses[request_id]
del self._responses[request_id]
_raise_granular_exception(result)
_maybe_raise_granular_exception(result)
return result

def _has_processing_capacity(self):
""" this function checks if currently have processing capacity for one more request or not. Depends on
the value from here, we decide whether we should proxy the request or not
"""
if not self._fastapi_app:
return False
active_server_count = len(self.servers)
max_processable = self.max_batch_size * active_server_count
current_req_count = len(self._fastapi_app.num_current_requests)
return current_req_count < max_processable

def run(self):
logger.info(f"servers: {self.servers}")
lock = asyncio.Lock()
Expand All @@ -219,6 +279,7 @@ def run(self):
fastapi_app = _create_fastapi("Load Balancer")
security = HTTPBasic()
fastapi_app.SEND_TASK = None
self._fastapi_app = fastapi_app

@fastapi_app.middleware("http")
async def current_request_counter(request: Request, call_next):
Expand Down Expand Up @@ -280,6 +341,14 @@ async def update_servers(servers: List[str], authenticated: bool = Depends(authe
async def balance_api(inputs: self._input_type):
return await self.process_request(inputs)

endpoint_info_page = self._get_endpoint_info_page()
if endpoint_info_page:
fastapi_app.mount(
"/endpoint-info", StaticFiles(directory=endpoint_info_page.serve_dir, html=True), name="static"
)

logger.info(f"Your load balancer has started. The endpoint is 'http://{self.host}:{self.port}{self.endpoint}'")

uvicorn.run(
fastapi_app,
host=self.host,
Expand Down Expand Up @@ -332,6 +401,56 @@ def send_request_to_update_servers(self, servers: List[str]):
response = requests.put(f"{self.url}/system/update-servers", json=servers, headers=headers, timeout=10)
response.raise_for_status()

@staticmethod
def _get_sample_dict_from_datatype(datatype: Any) -> dict:
if hasattr(datatype, "_get_sample_data"):
return datatype._get_sample_data()

datatype_props = datatype.schema()["properties"]
out: Dict[str, Any] = {}
lut = {"string": "data string", "number": 0.0, "integer": 0, "boolean": False}
for k, v in datatype_props.items():
if v["type"] not in lut:
raise TypeError("Unsupported type")
out[k] = lut[v["type"]]
return out

def get_code_sample(self, url: str) -> Optional[str]:
input_type: Any = self._input_type
output_type: Any = self._output_type

if not (hasattr(input_type, "request_code_sample") and hasattr(output_type, "response_code_sample")):
return None
return f"{input_type.request_code_sample(url)}\n{output_type.response_code_sample()}"

def _get_endpoint_info_page(self) -> Optional["APIAccessFrontend"]: # noqa: F821
try:
from lightning_api_access import APIAccessFrontend
except ModuleNotFoundError:
logger.warn("APIAccessFrontend not found. Please install lightning-api-access to enable the UI")
return

if is_running_in_cloud():
url = f"{self._future_url}{self.endpoint}"
else:
url = f"http://localhost:{self.port}{self.endpoint}"

frontend_objects = {"name": self._work_name, "url": url, "method": "POST", "request": None, "response": None}
code_samples = self.get_code_sample(url)
if code_samples:
frontend_objects["code_samples"] = code_samples
# TODO also set request/response for JS UI
else:
try:
request = self._get_sample_dict_from_datatype(self._input_type)
response = self._get_sample_dict_from_datatype(self._output_type)
except TypeError:
return None
else:
frontend_objects["request"] = request
frontend_objects["response"] = response
return APIAccessFrontend(apis=[frontend_objects])


class AutoScaler(LightningFlow):
"""The ``AutoScaler`` can be used to automatically change the number of replicas of the given server in
Expand All @@ -347,6 +466,7 @@ class AutoScaler(LightningFlow):
timeout_batching: (auto-batching) The number of seconds to wait before sending the requests to process.
input_type: Input type.
output_type: Output type.
cold_start_proxy: If provided, the proxy will be used while the gpu machines are warming up.

.. testcode::

Expand Down Expand Up @@ -403,8 +523,9 @@ def __init__(
max_batch_size: int = 8,
timeout_batching: float = 1,
endpoint: str = "api/predict",
input_type: BaseModel = Dict,
output_type: BaseModel = Dict,
input_type: Type[BaseModel] = Dict,
output_type: Type[BaseModel] = Dict,
cold_start_proxy: Union[ColdStartProxy, str, None] = None,
*work_args: Any,
**work_kwargs: Any,
) -> None:
Expand Down Expand Up @@ -438,6 +559,8 @@ def __init__(
timeout_batching=timeout_batching,
cache_calls=True,
parallel=True,
work_name=self._work_cls.__name__,
cold_start_proxy=cold_start_proxy,
)
for _ in range(min_replicas):
work = self.create_work()
Expand Down Expand Up @@ -574,5 +697,8 @@ def autoscale(self) -> None:
self._last_autoscale = time.time()

def configure_layout(self):
tabs = [{"name": "Swagger", "content": self.load_balancer.url}]
tabs = [
{"name": "Endpoint Info", "content": f"{self.load_balancer}/endpoint-info"},
{"name": "Swagger", "content": self.load_balancer.url},
]
return tabs