Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Disable attaching samplers when using IterableDataset #11507

Merged
merged 3 commits into from
Jan 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -423,6 +423,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed the lr-scheduler state not being dumped to checkpoint when using the deepspeed strategy ([#11307](https://github.com/PyTorchLightning/pytorch-lightning/pull/11307))


- Disbled sampler replacement when using `IterableDataset` ([#11507](https://github.com/PyTorchLightning/pytorch-lightning/pull/11507))


## [1.5.8] - 2022-01-05

### Fixed
Expand Down
10 changes: 5 additions & 5 deletions pytorch_lightning/utilities/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,7 +228,11 @@ def _get_dataloader_init_kwargs(

# kwargs to re-construct the dataloader
dl_kwargs = {k: v for k, v in attrs.items() if k in non_defaults}
dl_kwargs.update(_dataloader_init_kwargs_resolve_sampler(dataloader, sampler, mode=mode))
if isinstance(dl_kwargs["dataset"], IterableDataset):
dl_kwargs["batch_sampler"] = None
dl_kwargs["sampler"] = None
else:
dl_kwargs.update(_dataloader_init_kwargs_resolve_sampler(dataloader, sampler, mode=mode))

required_args = {
p.name
Expand Down Expand Up @@ -263,10 +267,6 @@ def _get_dataloader_init_kwargs(
f"`{dataloader_cls_name}(dataset, sampler=DistributedSampler(dataset))`."
)

if isinstance(dl_kwargs["dataset"], IterableDataset):
dl_kwargs["batch_sampler"] = None
dl_kwargs["sampler"] = None

if _FaultTolerantMode.detect_current_mode().is_automatic:
dl_kwargs = _apply_fault_tolerant_automatic_capture_dataset_wrapper(dl_kwargs)

Expand Down
15 changes: 15 additions & 0 deletions tests/utilities/test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@
from torch.utils.data.dataloader import DataLoader

from pytorch_lightning import Trainer
from pytorch_lightning.trainer.states import RunningStage
from pytorch_lightning.utilities.data import (
_get_dataloader_init_kwargs,
_replace_dataloader_init_method,
_update_dataloader,
extract_batch_size,
Expand Down Expand Up @@ -172,3 +174,16 @@ def __init__(self, attribute1, attribute2, *args, **kwargs):
dataloader = DataLoaderSubclass2("attribute1", "attribute2", dataset=range(4), batch_size=2)
assert dataloader.attribute1 == "attribute1"
assert dataloader.attribute2 == "attribute2"


@pytest.mark.parametrize("mode", [RunningStage.TRAINING, RunningStage.PREDICTING, RunningStage.TESTING])
def test_dataloader_kwargs_replacement_with_iterable_dataset(mode):
"""Test that DataLoader kwargs are not replaced when using Iterable Dataset."""
dataset = RandomIterableDataset(7, 100)
dataloader = DataLoader(dataset, batch_size=32)
dl_kwargs = _get_dataloader_init_kwargs(dataloader, dataloader.sampler, mode=mode)
assert dl_kwargs["sampler"] is None
assert dl_kwargs["batch_sampler"] is None
assert dl_kwargs["batch_size"] is dataloader.batch_size
assert dl_kwargs["dataset"] is dataloader.dataset
assert dl_kwargs["collate_fn"] is dataloader.collate_fn