Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix converting only float type tensors in Lite #10429

Merged
merged 9 commits into from
Nov 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed the logging with `on_step=True` in epoch-level hooks causing unintended side-effects. Logging with `on_step=True` in epoch-level hooks will now correctly raise an error ([#10409](https://github.com/PyTorchLightning/pytorch-lightning/pull/10409))


-
- Fixed an issue where the model wrapper in Lite converted non-floating point tensors to float ([#10429](https://github.com/PyTorchLightning/pytorch-lightning/pull/10429))


-
Expand Down
9 changes: 7 additions & 2 deletions pytorch_lightning/lite/wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,12 +95,17 @@ def forward(self, *args: Any, **kwargs: Any) -> Any:
}
# TODO (@awaelchli): let the precision plugin handle the conversion
to_type = precision_to_type[precision]
args, kwargs = apply_to_collection([args, kwargs], function=lambda t: t.to(to_type), dtype=Tensor)

def _convert_float_tensor(t: Tensor) -> Tensor:
return t.to(to_type) if torch.is_floating_point(t) else t
awaelchli marked this conversation as resolved.
Show resolved Hide resolved

args, kwargs = apply_to_collection([args, kwargs], function=_convert_float_tensor, dtype=Tensor)

with self._precision_plugin.forward_context():
output = self.module(*args, **kwargs)

output = apply_to_collection(output, function=lambda t: t.to(torch.get_default_dtype()), dtype=Tensor)
to_type = torch.get_default_dtype()
output = apply_to_collection(output, function=_convert_float_tensor, dtype=Tensor)
return output


Expand Down
11 changes: 8 additions & 3 deletions tests/lite/test_wrappers.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,13 @@ def test_lite_module_wraps():
(32, torch.float16, torch.float32),
(32, torch.float32, torch.float32),
(32, torch.float64, torch.float32),
(32, torch.int, torch.int),
(16, torch.float32, torch.float16),
(16, torch.float64, torch.float16),
(16, torch.long, torch.long),
pytest.param("bf16", torch.float32, torch.bfloat16, marks=RunIf(min_torch="1.10")),
pytest.param("bf16", torch.float64, torch.bfloat16, marks=RunIf(min_torch="1.10")),
pytest.param("bf16", torch.bool, torch.bool, marks=RunIf(min_torch="1.10")),
],
)
def test_lite_module_forward_conversion(precision, input_type, expected_type):
Expand All @@ -53,11 +58,11 @@ def check_autocast(forward_input):
assert precision != 16 or torch.is_autocast_enabled()
return forward_input

module = Mock(wraps=torch.nn.Linear(1, 1), side_effect=check_autocast)
module = Mock(wraps=torch.nn.Identity(), side_effect=check_autocast)
lite_module = _LiteModule(module, lite._precision_plugin).to(device)
out = lite_module(torch.rand(1, dtype=input_type, device=device))
out = lite_module(torch.tensor([1, 2, 3], dtype=input_type, device=device))
assert module.call_args[0][0].dtype == expected_type
assert out.dtype == torch.get_default_dtype()
assert out.dtype == input_type or out.dtype == torch.get_default_dtype()


def test_lite_dataloader_iterator():
Expand Down