Skip to content

Commit

Permalink
Set the logger explicitly in tests (#15815)
Browse files Browse the repository at this point in the history
(cherry picked from commit 9ed43c6)
  • Loading branch information
carmocca authored and Borda committed Dec 14, 2022
1 parent 23ca3ad commit f01e4fc
Show file tree
Hide file tree
Showing 18 changed files with 111 additions and 33 deletions.
6 changes: 3 additions & 3 deletions requirements/pytorch/test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -12,8 +12,8 @@ scikit-learn>0.22.1, <1.1.3
onnxruntime<1.14.0
psutil<5.9.4 # for `DeviceStatsMonitor`
pandas>1.0, <1.5.2 # needed in benchmarks
fastapi<0.87.0
uvicorn<0.19.1
fastapi<0.87.0 # for `ServableModuleValidator`
uvicorn<0.19.1 # for `ServableModuleValidator`

tensorboard>=2.9.1, <2.12.0
tensorboard>=2.9.1, <2.12.0 # for `TensorBoardLogger`
protobuf<=3.20.1 # strict # an extra is updating protobuf, this pin prevents TensorBoard failure
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from pytorch_lightning.callbacks import ProgressBarBase, RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset, RandomIterableDataset
from pytorch_lightning.loggers import CSVLogger
from tests_pytorch.helpers.runif import RunIf


Expand Down Expand Up @@ -330,7 +331,7 @@ def training_step(self, *args, **kwargs):

progress_bar = RichProgressBar()
model = CustomModel()
trainer = Trainer(default_root_dir=tmpdir, callbacks=progress_bar, fast_dev_run=True)
trainer = Trainer(default_root_dir=tmpdir, callbacks=progress_bar, fast_dev_run=True, logger=CSVLogger(tmpdir))

trainer.fit(model)
main_progress_bar_id = progress_bar.main_progress_bar_id
Expand Down Expand Up @@ -384,6 +385,7 @@ def test_step(self, batch, batch_idx):
enable_checkpointing=False,
log_every_n_steps=1,
callbacks=pbar,
logger=CSVLogger(tmpdir),
)

trainer.fit(model)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from pytorch_lightning.callbacks.progress.tqdm_progress import Tqdm
from pytorch_lightning.core.module import LightningModule
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.helpers.runif import RunIf

Expand Down Expand Up @@ -706,6 +707,7 @@ def test_step(self, batch, batch_idx):
enable_checkpointing=False,
log_every_n_steps=1,
callbacks=pbar,
logger=CSVLogger(tmpdir),
)

trainer.fit(model)
Expand Down
4 changes: 2 additions & 2 deletions tests/tests_pytorch/callbacks/test_device_stats_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,13 +155,13 @@ def test_prefix_metric_keys():
assert converted_metrics == {"foo.1": 1.0, "foo.2": 2.0, "foo.3": 3.0}


def test_device_stats_monitor_warning_when_psutil_not_available(monkeypatch):
def test_device_stats_monitor_warning_when_psutil_not_available(monkeypatch, tmp_path):
"""Test that warning is raised when psutil is not available."""
import pytorch_lightning.callbacks.device_stats_monitor as imports

monkeypatch.setattr(imports, "_PSUTIL_AVAILABLE", False)
monitor = DeviceStatsMonitor()
trainer = Trainer()
trainer = Trainer(logger=CSVLogger(tmp_path))
assert trainer.strategy.root_device == torch.device("cpu")
# TODO: raise an exception from v1.9
with pytest.warns(UserWarning, match="psutil` is not installed"):
Expand Down
33 changes: 30 additions & 3 deletions tests/tests_pytorch/callbacks/test_lr_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.callbacks.finetuning import BackboneFinetuning
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.helpers.datamodules import ClassifDataModule
from tests_pytorch.helpers.runif import RunIf
Expand All @@ -32,7 +33,12 @@ def test_lr_monitor_single_lr(tmpdir):

lr_monitor = LearningRateMonitor()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor]
default_root_dir=tmpdir,
max_epochs=2,
limit_val_batches=0.1,
limit_train_batches=0.5,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model)

Expand Down Expand Up @@ -70,6 +76,7 @@ def configure_optimizers(self):
limit_train_batches=5,
log_every_n_steps=1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model)

Expand All @@ -96,6 +103,7 @@ def configure_optimizers(self):
limit_train_batches=5,
log_every_n_steps=1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
with pytest.warns(RuntimeWarning, match="optimizers do not have momentum."):
trainer.fit(model)
Expand All @@ -117,7 +125,12 @@ def configure_optimizers(self):

lr_monitor = LearningRateMonitor()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor]
default_root_dir=tmpdir,
max_epochs=2,
limit_val_batches=0.1,
limit_train_batches=0.5,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)

trainer.fit(model)
Expand Down Expand Up @@ -154,6 +167,7 @@ def configure_optimizers(self):
limit_train_batches=5,
log_every_n_steps=1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model)

Expand All @@ -179,6 +193,7 @@ def configure_optimizers(self):
limit_train_batches=5,
log_every_n_steps=1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
with pytest.warns(RuntimeWarning, match="optimizers do not have momentum."):
trainer.fit(model)
Expand Down Expand Up @@ -226,6 +241,7 @@ def configure_optimizers(self):
limit_train_batches=7,
limit_val_batches=0.1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model)

Expand Down Expand Up @@ -269,6 +285,7 @@ def configure_optimizers(self):
limit_train_batches=7,
limit_val_batches=0.1,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model)

Expand Down Expand Up @@ -305,7 +322,12 @@ def configure_optimizers(self):

lr_monitor = LearningRateMonitor()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=2, limit_val_batches=0.1, limit_train_batches=0.5, callbacks=[lr_monitor]
default_root_dir=tmpdir,
max_epochs=2,
limit_val_batches=0.1,
limit_train_batches=0.5,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
)
trainer.fit(model, datamodule=dm)

Expand All @@ -330,6 +352,7 @@ def configure_optimizers(self):
callbacks=[lr_monitor],
enable_progress_bar=False,
enable_model_summary=False,
logger=CSVLogger(tmpdir),
)
trainer.fit(TestModel())
assert list(lr_monitor.lrs) == ["my_logging_name"]
Expand All @@ -349,6 +372,7 @@ def configure_optimizers(self):
limit_val_batches=2,
limit_train_batches=2,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
enable_progress_bar=False,
enable_model_summary=False,
)
Expand Down Expand Up @@ -384,6 +408,7 @@ def configure_optimizers(self):
limit_val_batches=2,
limit_train_batches=2,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
enable_progress_bar=False,
enable_model_summary=False,
)
Expand Down Expand Up @@ -475,6 +500,7 @@ def finetune_function(self, pl_module, epoch: int, optimizer, opt_idx: int):
limit_val_batches=0,
limit_train_batches=2,
callbacks=[TestFinetuning(), lr_monitor, Check()],
logger=CSVLogger(tmpdir),
enable_progress_bar=False,
enable_model_summary=False,
enable_checkpointing=False,
Expand Down Expand Up @@ -533,6 +559,7 @@ def configure_optimizers(self):
limit_val_batches=2,
limit_train_batches=2,
callbacks=[lr_monitor],
logger=CSVLogger(tmpdir),
enable_progress_bar=False,
enable_model_summary=False,
)
Expand Down
3 changes: 2 additions & 1 deletion tests/tests_pytorch/callbacks/test_stochastic_weight_avg.py
Original file line number Diff line number Diff line change
Expand Up @@ -303,13 +303,14 @@ def _swa_resume_training_from_checkpoint(tmpdir, model, resume_model, ddp=False)
"limit_val_batches": 0,
"accumulate_grad_batches": 2,
"enable_progress_bar": False,
"logger": False,
}
trainer = Trainer(callbacks=SwaTestCallback(swa_epoch_start=swa_start, swa_lrs=0.1), **trainer_kwargs)

with _backward_patch(trainer), pytest.raises(Exception, match="SWA crash test"):
trainer.fit(model)

checkpoint_dir = Path(tmpdir) / "lightning_logs" / "version_0" / "checkpoints"
checkpoint_dir = Path(tmpdir) / "checkpoints"
checkpoint_files = os.listdir(checkpoint_dir)
assert len(checkpoint_files) == 1
ckpt_path = str(checkpoint_dir / checkpoint_files[0])
Expand Down
20 changes: 15 additions & 5 deletions tests/tests_pytorch/checkpointing/test_model_checkpoint.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _OMEGACONF_AVAILABLE
from tests_pytorch.helpers.runif import RunIf
Expand Down Expand Up @@ -301,9 +301,11 @@ def test_model_checkpoint_with_non_string_input(tmpdir, save_top_k: int):

checkpoint = ModelCheckpoint(monitor="early_stop_on", dirpath=None, filename="{epoch}", save_top_k=save_top_k)
max_epochs = 2
trainer = Trainer(default_root_dir=tmpdir, callbacks=[checkpoint], overfit_batches=0.20, max_epochs=max_epochs)
trainer = Trainer(
default_root_dir=tmpdir, callbacks=[checkpoint], overfit_batches=0.20, max_epochs=max_epochs, logger=False
)
trainer.fit(model)
assert checkpoint.dirpath == tmpdir / trainer.logger.name / "version_0" / "checkpoints"
assert checkpoint.dirpath == tmpdir / "checkpoints"

if save_top_k == -1:
ckpt_files = os.listdir(checkpoint.dirpath)
Expand Down Expand Up @@ -753,15 +755,20 @@ def test_default_checkpoint_behavior(tmpdir):

model = LogInTwoMethods()
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=3, enable_progress_bar=False, limit_train_batches=5, limit_val_batches=5
default_root_dir=tmpdir,
max_epochs=3,
enable_progress_bar=False,
limit_train_batches=5,
limit_val_batches=5,
logger=False,
)

with patch.object(trainer, "save_checkpoint", wraps=trainer.save_checkpoint) as save_mock:
trainer.fit(model)
results = trainer.test()

assert len(results) == 1
save_dir = tmpdir / "lightning_logs" / "version_0" / "checkpoints"
save_dir = tmpdir / "checkpoints"
save_weights_only = trainer.checkpoint_callback.save_weights_only
save_mock.assert_has_calls(
[
Expand Down Expand Up @@ -867,6 +874,7 @@ def validation_step(self, batch, batch_idx):
"enable_model_summary": False,
"log_every_n_steps": 1,
"default_root_dir": tmpdir,
"logger": CSVLogger(tmpdir),
}
trainer = Trainer(**trainer_kwargs, callbacks=[checkpoint_callback])
trainer.fit(model)
Expand Down Expand Up @@ -931,6 +939,7 @@ def assert_checkpoint_log_dir(idx):
limit_val_batches=3,
limit_test_batches=4,
callbacks=[checkpoint_cb],
logger=TensorBoardLogger(tmpdir),
)
trainer = Trainer(**trainer_config)
assert_trainer_init(trainer)
Expand All @@ -953,6 +962,7 @@ def assert_checkpoint_log_dir(idx):
assert_checkpoint_content(ckpt_dir)

# load from checkpoint
trainer_config["logger"] = TensorBoardLogger(tmpdir)
trainer = pl.Trainer(**trainer_config)
assert_trainer_init(trainer)

Expand Down
10 changes: 9 additions & 1 deletion tests/tests_pytorch/loggers/test_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,12 @@ def __init__(self, param_one, param_two):

model = TestModel("pytorch", "lightning")
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
num_sanity_val_steps=0,
logger=TensorBoardLogger(tmpdir),
)
trainer.fit(model)

Expand Down Expand Up @@ -270,6 +275,7 @@ class _Test:

trainer = Trainer(
default_root_dir=tmpdir,
logger=TensorBoardLogger(tmpdir),
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
Expand All @@ -294,6 +300,7 @@ class _Test:
dm = TestDataModule(diff_params)
trainer = Trainer(
default_root_dir=tmpdir,
logger=TensorBoardLogger(tmpdir),
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
Expand All @@ -311,6 +318,7 @@ class _Test:
dm = TestDataModule(tensor_params)
trainer = Trainer(
default_root_dir=tmpdir,
logger=TensorBoardLogger(tmpdir),
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
Expand Down
2 changes: 1 addition & 1 deletion tests/tests_pytorch/loggers/test_tensorboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def __init__(self, b1=0.5, b2=0.999):
super().__init__()
self.save_hyperparameters()

trainer = Trainer(max_steps=1, default_root_dir=tmpdir)
trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=TensorBoardLogger(tmpdir))
model = CustomModel()
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
Expand Down
9 changes: 8 additions & 1 deletion tests/tests_pytorch/models/test_grad_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

from pytorch_lightning import Trainer
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.loggers import CSVLogger


class ModelWithManualGradTracker(BoringModel):
Expand Down Expand Up @@ -86,7 +87,13 @@ def on_train_batch_end(self, *_) -> None:
@pytest.mark.parametrize("log_every_n_steps", [1, 2, 3])
def test_grad_tracking_interval(tmpdir, log_every_n_steps):
"""Test that gradient norms get tracked in the right interval and that everytime the same keys get logged."""
trainer = Trainer(default_root_dir=tmpdir, track_grad_norm=2, log_every_n_steps=log_every_n_steps, max_steps=10)
trainer = Trainer(
default_root_dir=tmpdir,
track_grad_norm=2,
log_every_n_steps=log_every_n_steps,
max_steps=10,
logger=CSVLogger(tmpdir),
)

with patch.object(trainer.logger, "log_metrics") as mocked:
model = BoringModel()
Expand Down
10 changes: 8 additions & 2 deletions tests/tests_pytorch/models/test_hparams.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from pytorch_lightning.core.mixins import HyperparametersMixin
from pytorch_lightning.core.saving import load_hparams_from_yaml, save_hparams_to_yaml
from pytorch_lightning.demos.boring_classes import BoringDataModule, BoringModel, RandomDataset
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, AttributeDict, is_picklable
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.helpers.runif import RunIf
Expand Down Expand Up @@ -642,7 +643,12 @@ def test_init_arg_with_runtime_change(tmpdir, cls):
assert model.hparams.running_arg == -1

trainer = Trainer(
default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=1
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
limit_test_batches=2,
max_epochs=1,
logger=TensorBoardLogger(tmpdir),
)
trainer.fit(model)

Expand Down Expand Up @@ -875,7 +881,7 @@ def test_colliding_hparams(tmpdir):
model = SaveHparamsModel({"data_dir": "abc", "arg2": "abc"})
data = DataModuleWithHparams({"data_dir": "foo"})

trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, logger=CSVLogger(tmpdir))
with pytest.raises(MisconfigurationException, match=r"Error while merging hparams:"):
trainer.fit(model, datamodule=data)

Expand Down
Loading

0 comments on commit f01e4fc

Please sign in to comment.