Skip to content

Commit

Permalink
Docs 4/n (#15628)
Browse files Browse the repository at this point in the history
* remove source-lit

* docs

* docs

* docs

* docs

* ic

* deploy

* deploy

* deploy

* deploy

* deploy

* deploy

* Apply suggestions from code review

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* make build run

Co-authored-by: Jirka Borovec <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Rick Izzo <[email protected]>
  • Loading branch information
4 people authored Nov 10, 2022
1 parent 136a090 commit d5c0eff
Show file tree
Hide file tree
Showing 25 changed files with 224 additions and 128 deletions.
2 changes: 1 addition & 1 deletion docs/source-app/api_reference/components.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,6 @@ ___________________

~python.popen.PopenPythonScript
~python.tracer.TracerPythonScript
~training.LightningTrainingComponent
~training.LightningTrainerScript
~serve.gradio.ServeGradio
~serve.serve.ModelInferenceAPI
2 changes: 1 addition & 1 deletion docs/source-app/api_references.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ ___________________

~python.popen.PopenPythonScript
~python.tracer.TracerPythonScript
~training.LightningTrainingComponent
~training.LightningTrainerScript
~serve.gradio.ServeGradio
~serve.serve.ModelInferenceAPI

Expand Down
36 changes: 20 additions & 16 deletions docs/source-app/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
#######################
Welcome to ⚡ Lightning
#######################
Build models and full stack AI apps ⚡ *Lightning fast*.
Build models, ML components and full stack AI apps ⚡ *Lightning fast*.

.. join_slack::
:align: left
Expand All @@ -22,23 +22,22 @@ Build models and full stack AI apps ⚡ *Lightning fast*.

.. app_card::
:title: Develop and Train
:description: Train an LLM (64 GPUs)
:description: Train a model (32 GPUs)
:width: 280
:image: https://lightning-ai-docs.s3.amazonaws.com/develop_n_train_v1.jpg
:preview: https://lightning.ai
:deploy: https://lightning.ai
:target: https://apple.com
:tags: Model
:target: levels/basic/real_lightning_component_implementations.html#ex-pytorch-lightning-trainer
:preview: levels/basic/real_lightning_component_implementations.html#ex-pytorch-lightning-trainer
:tags: Training

.. app_card::
:title: Serve and deploy
:description: Production-ready stable diffusion server (<2s latency)
:description: Production diffusion server (<2s latency)
:width: 280
:app_id: HvUwbEG90E
:image: https://lightning-ai-docs.s3.amazonaws.com/serve_n_deploy_v1.jpg
:deploy: https://lightning.ai
:target: https://01gbx4m78rbkpczdf5cpz2hpbh.litng-ai-03.litng.ai/root.api_component/
:tags: App
:tags: Serving

.. app_card::
:title: Scale and build a product
Expand All @@ -47,7 +46,7 @@ Build models and full stack AI apps ⚡ *Lightning fast*.
:app_id: HvUwbEG90E
:image: https://lightning-ai-docs.s3.amazonaws.com/scale_n_build_v1.jpg
:target: https://lightning.ai/muse
:tags: App
:tags: AI App

.. raw:: html

Expand All @@ -56,13 +55,14 @@ Build models and full stack AI apps ⚡ *Lightning fast*.

----

****************************************
Build self-contained, modular components
****************************************
Lightning is a hyper-minimalistic framework designed to maximize expressivity that
enables you to build modular, self-contained components and plug them into your existing workflows.
A Lightning component organizes arbitrary code so it can run on the cloud. A component can train a model, deploy, or even host a web UI.
The component manages its own infrastructure, cloud costs, networking and more, so you can focus on application logic and not engineering.
********************************
Build self-contained, components
********************************
Use Lightning, the hyper-minimalistic framework, to build machine learning components that can plug into existing ML workflows.
A Lightning component organizes arbitrary code to run on the cloud, manage its own infrastructure, cloud costs, networking, and more.
Focus on component logic and not engineering.

Use components on their own, or compose them into full-stack AI apps with our next-generation Lightning orchestrator.

.. raw:: html

Expand All @@ -78,6 +78,10 @@ The component manages its own infrastructure, cloud costs, networking and more,

.. include:: ./levels/basic/hero_components.rst

|
Components run the same on the cloud and locally on your choice of hardware.

.. lit_tabs::
:code_files: landing_app_run.bash
:highlights: 5
Expand Down
4 changes: 2 additions & 2 deletions docs/source-app/landing_app_run.bash
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# install lightning
pip install lightning

# run the app
lightning run app app.py --cloud
# run the app on the --cloud (--setup installs deps automatically)
lightning run app app.py --setup --cloud
20 changes: 7 additions & 13 deletions docs/source-app/levels/basic/build_a_lightning_component.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,12 @@ Level 1: Package code in a lightning component
*********************************
Why you need Lightning components
*********************************
A Lightning component organizes a piece of code into a self-contained, modular component that
can be integrated into your existing workflows or assembled to form a Lightning app.
A Lightning component manages its own infrastructure, auto-scaling, cost management, and more, so you
can focus on the program logic and not the cloud engineering.
A Lightning component is a self-contained, modular machine-learning component
that you can plug into your existing ML workflows. A Lightning component organizes arbitrary code so it can run on the cloud, manages
its own infrastructure, cloud costs, networking and more. Connect components using your current workflow management tools or
our `next-generation reactive orchestrator <../intermediate/index.html>`_.

Components run on the cloud or your laptop without code changes 🤯🤯. Connect components using your current workflow management tools or use
Lightning apps to build powerful sequential AND reactive workflows.
Components run on the cloud or your laptop without code changes 🤯🤯.

.. raw:: html

Expand Down Expand Up @@ -109,7 +108,7 @@ First, install Lightning.
**************************
Build your first component
**************************
A Lightning component organizes Python code into a self-contained module so it can run on the cloud.
A Lightning component organizes arbitrary code so it can run on the cloud, manages its own infrastructure, cloud costs, networking and more

**Run one of these components!**

Expand All @@ -119,12 +118,7 @@ A Lightning component organizes Python code into a self-contained module so it c
Components run the same on the cloud and locally on your choice of hardware.

.. lit_tabs::
:titles: Lightning Cloud (fully-managed); Your AWS account; Your own hardware
:code_files: ./hello_components/code_run_cloud.bash; ./hello_components/code_run_cloud_yours.bash; ./hello_components/code_run_local.bash
:tab_rows: 4
:highlights: ; 5; 0
:height: 195px
.. include:: /levels/basic/hero_run_setup.rst

----

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
lightning run app app.py --setup --cloud
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# first create a cluster (creation could take ~30 minutes)
lightning create cluster pikachu --provider aws --role-arn arn:aws:iam::1234567890:role/lai-byoc

# run on that cluster
lightning run app app.py --setup --cloud pikachu
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
lightning run app app.py --setup
34 changes: 25 additions & 9 deletions docs/source-app/levels/basic/hello_components/deploy_model.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,31 @@
# A hello world component
# app.py
# !pip install torchvision
import lightning as L
from lightning.app.components.serve import PythonServer, Image, Number
import base64, io, torchvision, torch
from PIL import Image as PILImage


class YourComponent(L.LightningWork):
def run(self):
print('RUN ANY PYTHON CODE HERE')
class PyTorchServer(PythonServer):
def setup(self):
self._model = torchvision.models.resnet18(pretrained=True)
self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._model.to(self._device)

def predict(self, request):
image = base64.b64decode(request.image.encode("utf-8"))
image = PILImage.open(io.BytesIO(image))
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = transforms(image)
image = image.to(self._device)
prediction = self._model(image.unsqueeze(0))
return {"prediction": prediction.argmax().item()}


# run on a cloud machine
compute = L.CloudCompute("cpu")
worker = YourComponent(cloud_compute=compute)
app = L.LightningApp(worker)
component = PyTorchServer(
input_type=Image, output_type=Number, cloud_compute=L.CloudCompute('gpu')
)
app = L.LightningApp(component)
20 changes: 20 additions & 0 deletions docs/source-app/levels/basic/hello_components/pl_multinode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# app.py
import lightning as L
from lightning.app.components import PyTorchLightningMultiNode
from lightning.pytorch.demos.boring_classes import BoringModel


class LightningTrainerDistributed(L.LightningWork):
@staticmethod
def run():
model = BoringModel()
trainer = L.Trainer(max_epochs=10, strategy="ddp")
trainer.fit(model)

# 8 GPU: (2 nodes of 4 x v100)
component = PyTorchLightningMultiNode(
LightningTrainerDistributed,
num_nodes=2,
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x v100
)
app = L.LightningApp(component)
75 changes: 53 additions & 22 deletions docs/source-app/levels/basic/hello_components/pt_multinode.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,61 @@
# !pip install torch
# app.py
# ! pip install torch
import lightning as L
from lightning.app.components import MultiNode
import torch
from torch.nn.parallel.distributed import DistributedDataParallel

class MultiNodePytorchComponent(L.LightningWork):
def run(
self,
main_address: str,
main_port: int,
node_rank: int,
world_size: int,
):
# this machine creates a group of processes and registers to the main node
print(f"Init process group: {main_address=}, {main_port=}, {world_size=}, {node_rank=}")

def distributed_train(local_rank: int, main_address: str, main_port: int, num_nodes: int, node_rank: int, nprocs: int):
# 1. SET UP DISTRIBUTED ENVIRONMENT
global_rank = local_rank + node_rank * nprocs
world_size = num_nodes * nprocs

if torch.distributed.is_available() and not torch.distributed.is_initialized():
torch.distributed.init_process_group(
backend="gloo",
init_method=f"tcp://{main_address}:{main_port}",
"nccl" if torch.cuda.is_available() else "gloo",
rank=global_rank,
world_size=world_size,
rank=node_rank
init_method=f"tcp://{main_address}:{main_port}",
)

# 2. PREPARE DISTRIBUTED MODEL
model = torch.nn.Linear(32, 2)
device = torch.device(f"cuda:{local_rank}") if torch.cuda.is_available() else torch.device("cpu")
device_ids = device if torch.cuda.is_available() else None
model = DistributedDataParallel(model, device_ids=device_ids).to(device)

# 3. SETUP LOSS AND OPTIMIZER
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 4.TRAIN THE MODEL FOR 50 STEPS
for step in range(50):
model.zero_grad()
x = torch.randn(64, 32).to(device)
output = model(x)
loss = criterion(output, torch.ones_like(output))
print(f"global_rank: {global_rank} step: {step} loss: {loss}")
loss.backward()
optimizer.step()

# 5. VERIFY ALL COPIES OF THE MODEL HAVE THE SAME WEIGTHS AT END OF TRAINING
weight = model.module.weight.clone()
torch.distributed.all_reduce(weight)
assert torch.equal(model.module.weight, weight / world_size)

print("Multi Node Distributed Training Done!")

class PyTorchDistributed(L.LightningWork):
def run(self, main_address: str, main_port: int, num_nodes: int, node_rank: int):
nprocs = torch.cuda.device_count() if torch.cuda.is_available() else 1
torch.multiprocessing.spawn(
distributed_train,
args=(main_address, main_port, num_nodes, node_rank, nprocs),
nprocs=nprocs
)
for step in range(10000):
gathered = [torch.zeros(1) for _ in range(world_size)]
torch.distributed.all_gather(gathered, torch.tensor([node_rank]).float())
print(f'step: {step}, tensor: {gathered}')

# gpu-multi-fast has 4 GPUs x 8 nodes = 32 GPUs
component = MultiNodePytorchComponent(cloud_compute=L.CloudCompute("gpu-multi-fast"))
component = MultiNode(component, nodes=8)

# 32 GPUs: (8 nodes x 4 v 100)
compute = L.CloudCompute("gpu-fast-multi") # 4xV100
component = MultiNode(PyTorchDistributed, num_nodes=8, cloud_compute=compute)
app = L.LightningApp(component)
13 changes: 13 additions & 0 deletions docs/source-app/levels/basic/hello_components/run_ptl_script.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# app.py
# !curl https://bit.ly/demoLightningScriptpy -o pl_boring_script.py
import lightning as L
from lightning.app.components.training import LightningTrainerScript

# run script that trains PyTorch with the Lightning Trainer
model_script = 'pl_boring_script.py'
component = LightningTrainerScript(
model_script,
num_nodes=1,
cloud_compute=L.CloudCompute("gpu")
)
app = L.LightningApp(component)
15 changes: 0 additions & 15 deletions docs/source-app/levels/basic/hello_components/run_script.py

This file was deleted.

Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# app.py
# !pip install streamlit omegaconf scipy
# !pip install torch

import lightning as L
import torch
from io import BytesIO
Expand All @@ -10,21 +9,11 @@
import streamlit as st


class LitStreamlit(L.app.components.ServeStreamlit):
class StreamlitApp(L.app.components.ServeStreamlit):
def build_model(self):
sample_rate = 48000

model, _ = torch.hub.load(
repo_or_dir='snakers4/silero-models',
model='silero_tts',
speaker="v3_en",
)

return partial(
model.apply_tts,
sample_rate=sample_rate,
speaker="en_0",
), sample_rate
model, _ = torch.hub.load('snakers4/silero-models', model='silero_tts',speaker="v3_en")
return partial(model.apply_tts, sample_rate=sample_rate, speaker="en_0"), sample_rate

def render(self):
st.title("Text To Speech")
Expand All @@ -38,4 +27,4 @@ def render(self):
audio.seek(0)
st.audio(audio)

app = L.LightningApp(LitStreamlit())
app = L.LightningApp(StreamlitApp())
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# app.py
# ! pip install torch
import lightning as L
import torch

Expand All @@ -23,4 +24,5 @@ def run(self):
optimizer.step()

compute = L.CloudCompute('gpu')
app = L.LightningApp(PyTorchComponent(cloud_compute=compute))
componet = PyTorchComponent(cloud_compute=compute)
app = L.LightningApp(componet)
1 change: 0 additions & 1 deletion docs/source-app/levels/basic/hello_components/xgboost.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
# app.py
# !pip install sklearn xgboost

import lightning as L
from sklearn import datasets
from sklearn.model_selection import train_test_split
Expand Down
Loading

0 comments on commit d5c0eff

Please sign in to comment.