Skip to content

Commit

Permalink
Avoid in-place ops during logging result updates (#11401)
Browse files Browse the repository at this point in the history
Co-authored-by: rohitgr7 <[email protected]>
  • Loading branch information
carmocca and rohitgr7 committed Jan 12, 2022
1 parent 246774c commit 615ceec
Show file tree
Hide file tree
Showing 3 changed files with 27 additions and 4 deletions.
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,13 @@ All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

## [1.5.9] - 2022-01-11
## [1.5.9] - 2022-01-18

### Fixed

- Pin sphinx-autodoc-typehints with <v1.15 ([#11400](https://github.com/PyTorchLightning/pytorch-lightning/pull/11400))
- Skip testing with PyTorch 1.7 and Python 3.9 on Ubuntu ([#11217](https://github.com/PyTorchLightning/pytorch-lightning/pull/11217))
- Fixed type promotion when tensors of higher category than float are logged ([#11401](https://github.com/PyTorchLightning/pytorch-lightning/pull/11401))


## [1.5.8] - 2022-01-05
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -217,6 +217,7 @@ def __init__(self, metadata: _Metadata, is_tensor: bool) -> None:
# do not set a dtype in case the default dtype was changed
self.add_state("value", torch.tensor(default), dist_reduce_fx=torch.sum)
if self.meta.is_mean_reduction:
self.cumulated_batch_size: torch.Tensor
self.add_state("cumulated_batch_size", torch.tensor(0), dist_reduce_fx=torch.sum)

def update(self, value: _IN_METRIC, batch_size: int) -> None:
Expand All @@ -240,12 +241,13 @@ def update(self, value: _IN_METRIC, batch_size: int) -> None:

# perform accumulation with reduction
if self.meta.is_mean_reduction:
self.value += value.mean() * batch_size
self.cumulated_batch_size += batch_size
# do not use `+=` as it doesn't do type promotion
self.value = self.value + value.mean() * batch_size
self.cumulated_batch_size = self.cumulated_batch_size + batch_size
elif self.meta.is_max_reduction or self.meta.is_min_reduction:
self.value = self.meta.reduce_fx(self.value, value.mean())
elif self.meta.is_sum_reduction:
self.value += value.mean()
self.value = self.value + value.mean()
else:
self.value = value
self._forward_cache = value._forward_cache
Expand Down
20 changes: 20 additions & 0 deletions tests/core/test_metric_result_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -593,6 +593,26 @@ def test_metric_result_respects_dtype(floating_dtype):
torch.set_default_dtype(torch.float)


@pytest.mark.parametrize("reduce_fx", ("mean", sum))
def test_metric_result_dtype_promotion(reduce_fx):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)
metadata.sync = _Sync()
rm = ResultMetric(metadata, is_tensor=True)
assert rm.value.dtype == torch.float

# log a double
rm.update(torch.tensor(0, dtype=torch.double), 1)
# `rm.value.dtype` is promoted
assert rm.value.dtype == torch.double
# log a float
rm.update(torch.tensor(0, dtype=torch.float), 1)
# the previous dtype stays
assert rm.value.dtype == torch.double

total = rm.compute()
assert total.dtype == torch.double


@pytest.mark.parametrize(["reduce_fx", "expected"], [(max, -2), (min, 2)])
def test_result_metric_max_min(reduce_fx, expected):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)
Expand Down

0 comments on commit 615ceec

Please sign in to comment.