Apache Airflow is a platform to programmatically author, schedule and monitor workflows. Astronomer is a software company built around Airflow. We have extracted this Helm Chart from our platform Helm chart and made it accessible under Apache 2 license.
To install this helm chart remotely (using helm 3)
kubectl create namespace airflow
helm repo add astronomer https://helm.astronomer.io
helm install airflow --namespace airflow astronomer/airflow
To install airflow with the KEDA autoscaler
helm repo add kedacore https://kedacore.github.io/charts
helm repo add astronomer https://helm.astronomer.io
helm repo update
kubectl create namespace keda
helm install keda \
--namespace keda kedacore/keda
kubectl create namespace airflow
helm install airflow \
--set executor=CeleryExecutor \
--set workers.keda.enabled=true \
--set workers.persistence.enabled=false \
--namespace airflow \
astronomer/airflow
To install this repository from source
kubectl create namespace airflow
helm install --namespace airflow .
This chart will bootstrap an Airflow deployment on a Kubernetes cluster using the Helm package manager.
- Kubernetes 1.12+
- Helm 2.11+ or Helm 3.0+
- PV provisioner support in the underlying infrastructure
To install the chart with the release name my-release
:
helm install --name my-release .
The command deploys Airflow on the Kubernetes cluster in the default configuration. The Parameters section lists the parameters that can be configured during installation.
Tip: List all releases using
helm list
To upgrade the chart with the release name my-release
:
helm upgrade --name my-release .
To uninstall/delete the my-release
deployment:
helm delete my-release
The command removes all the Kubernetes components associated with the chart and deletes the release.
The recommended way to update your DAGs with this chart is to build a new docker image with the latest code (docker build -t my-company/airflow:8a0da78 .
), push it to an accessible registry (docker push my-company/airflow:8a0da78
), then update the Airflow pods with that image:
helm upgrade my-release . \
--set images.airflow.repository=my-company/airflow \
--set images.airflow.tag=8a0da78
- The Airflow image that are referenced as the default values in this chart are generated from this repository: https://github.com/astronomer/ap-airflow.
- Other non-airflow images used in this chart are generted from this repository: https://github.com/astronomer/ap-vendor.
The following tables lists the configurable parameters of the Airflow chart and their default values.
Parameter | Description | Default |
---|---|---|
uid |
UID to run airflow pods under | nil |
gid |
GID to run airflow pods under | nil |
nodeSelector |
Node labels for pod assignment | {} |
affinity |
Affinity labels for pod assignment | {} |
tolerations |
Toleration labels for pod assignment | [] |
labels |
Common labels to add to all objects defined in this chart | {} |
privateRegistry.enabled |
Enable usage of a private registry for Airflow base image | false |
privateRegistry.repository |
Repository where base image lives (eg: quay.io) | ~ |
ingress.enabled |
Enable Kubernetes Ingress support | false |
ingress.acme |
Add acme annotations to Ingress object | false |
ingress.tlsSecretName |
Name of secret that contains a TLS secret | ~ |
ingress.baseDomain |
Base domain for VHOSTs | ~ |
ingress.class |
Ingress class to associate with | nginx |
ingress.auth.enabled |
Enable auth with Astronomer Platform | true |
networkPolicies.enabled |
Enable Network Policies to restrict traffic | true |
airflowHome |
Location of airflow home directory | /usr/local/airflow |
rbacEnabled |
Deploy pods with Kubernets RBAC enabled | true |
airflowVersion |
Default Airflow image version | 1.10.5 |
executor |
Airflow executor (eg SequentialExecutor, LocalExecutor, CeleryExecutor, KubernetesExecutor) | KubernetesExecutor |
allowPodLaunching |
Allow airflow pods to talk to Kubernetes API to launch more pods | true |
defaultAirflowRepository |
Fallback docker repository to pull airflow image from | astronomerinc/ap-airflow |
defaultAirflowTag |
Fallback docker image tag to deploy | 1.10.7-alpine3.10 |
images.airflow.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-airflow |
images.airflow.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.airflow.pullPolicy |
PullPolicy for airflow image | IfNotPresent |
images.flower.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-airflow |
images.flower.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.flower.pullPolicy |
PullPolicy for flower image | IfNotPresent |
images.statsd.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-statsd-exporter |
images.statsd.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.statsd.pullPolicy |
PullPolicy for statsd-exporter image | IfNotPresent |
images.redis.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-redis |
images.redis.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.redis.pullPolicy |
PullPolicy for redis image | IfNotPresent |
images.pgbouncer.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-pgbouncer |
images.pgbouncer.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.pgbouncer.pullPolicy |
PullPolicy for pgbouncer image | IfNotPresent |
images.pgbouncerExporter.repository |
Docker repository to pull image from. Update this to deploy a custom image | astronomerinc/ap-pgbouncer-exporter |
images.pgbouncerExporter.tag |
Docker image tag to pull image from. Update this to deploy a new custom image tag | ~ |
images.pgbouncerExporter.pullPolicy |
PullPolicy for pgbouncer-exporter image | IfNotPresent |
env |
Environment variables key/values to mount into Airflow pods | [] |
secret |
Secret name/key pairs to mount into Airflow pods | [] |
data.metadataSecretName |
Secret name to mount Airflow connection string from | ~ |
data.resultBackendSecretName |
Secret name to mount Celery result backend connection string from | ~ |
data.metadataConection |
Field separated connection data (alternative to secret name) | {} |
data.resultBackendConnection |
Field separated connection data (alternative to secret name) | {} |
fernetKey |
String representing an Airflow fernet key | ~ |
fernetKeySecretName |
Secret name for Airlow fernet key | ~ |
workers.replicas |
Replica count for Celery workers (if applicable) | 1 |
workers.keda.enabled |
Enable KEDA autoscaling features | false |
workers.keda.pollingInverval |
How often KEDA should poll the backend database for metrics in seconds | 5 |
workers.keda.cooldownPeriod |
How often KEDA should wait before scaling down in seconds | 30 |
workers.keda.maxReplicaCount |
Maximum number of Celery workers KEDA can scale to | 10 |
workers.persistence.enabled |
Enable log persistence in workers via StatefulSet | false |
workers.persistence.size |
Size of worker volumes if enabled | 100Gi |
workers.persistence.storageClassName |
StorageClass worker volumes should use if enabled | default |
workers.resources.limits.cpu |
CPU Limit of workers | ~ |
workers.resources.limits.memory |
Memory Limit of workers | ~ |
workers.resources.requests.cpu |
CPU Request of workers | ~ |
workers.resources.requests.memory |
Memory Request of workers | ~ |
workers.terminationGracePeriodSeconds |
How long Kubernetes should wait for Celery workers to gracefully drain before force killing | 600 |
workers.autoscaling.enabled |
Traditional HorizontalPodAutoscaler | false |
workers.autoscaling.minReplicas |
Minimum amount of workers | 1 |
workers.autoscaling.maxReplicas |
Maximum amount of workers | 10 |
workers.targetCPUUtilization |
Target CPU Utilization of workers | 80 |
workers.targetMemoryUtilization |
Target Memory Utilization of workers | 80 |
workers.safeToEvict |
Allow Kubernetes to evict worker pods if needed (node downscaling) | true |
scheduler.podDisruptionBudget.enabled |
Enable PDB on Airflow scheduler | false |
scheduler.podDisruptionBudget.config.maxUnavailable |
MaxUnavailable pods for scheduler | 1 |
scheduler.resources.limits.cpu |
CPU Limit of scheduler | ~ |
scheduler.resources.limits.memory |
Memory Limit of scheduler | ~ |
scheduler.resources.requests.cpu |
CPU Request of scheduler | ~ |
scheduler.resources.requests.memory |
Memory Request of scheduler | ~ |
scheduler.airflowLocalSettings |
Custom Airflow local settings python file | ~ |
scheduler.safeToEvict |
Allow Kubernetes to evict scheduler pods if needed (node downscaling) | true |
webserver.livenessProbe.initialDelaySeconds |
Webserver LivenessProbe initial delay | 15 |
webserver.livenessProbe.timeoutSeconds |
Webserver LivenessProbe timeout seconds | 30 |
webserver.livenessProbe.failureThreshold |
Webserver LivenessProbe failure threshold | 20 |
webserver.livenessProbe.periodSeconds |
Webserver LivenessProbe period seconds | 5 |
webserver.readinessProbe.initialDelaySeconds |
Webserver ReadinessProbe initial delay | 15 |
webserver.readinessProbe.timeoutSeconds |
Webserver ReadinessProbe timeout seconds | 30 |
webserver.readinessProbe.failureThreshold |
Webserver ReadinessProbe failure threshold | 20 |
webserver.readinessProbe.periodSeconds |
Webserver ReadinessProbe period seconds | 5 |
webserver.replicas |
How many Airflow webserver replicas should run | 1 |
webserver.resources.limits.cpu |
CPU Limit of webserver | ~ |
webserver.resources.limits.memory |
Memory Limit of webserver | ~ |
webserver.resources.requests.cpu |
CPU Request of webserver | ~ |
webserver.resources.requests.memory |
Memory Request of webserver | ~ |
webserver.jwtSigningCertificateSecretName |
Name of secret to mount Airflow Webserver JWT singing certificate from | ~ |
webserver.defaultUser |
Optional default airflow user information | {} |
Specify each parameter using the --set key=value[,key=value]
argument to helm install
. For example,
helm install --name my-release \
--set executor=CeleryExecutor \
--set enablePodLaunching=false .
KEDA stands for Kubernetes Event Driven Autoscaling. KEDA is a custom controller that allows users to create custom bindings to the Kubernetes Horizontal Pod Autoscaler. We've built an experimental scaler that allows users to create scalers based on postgreSQL queries. For the moment this exists on a seperate branch, but will be merged upstream soon. To install our custom version of KEDA on your cluster, please run
helm repo add kedacore https://kedacore.github.io/charts
helm repo update
helm install \
--set image.keda=docker.io/kedacore/keda:1.2.0 \
--set image.metricsAdapter=docker.io/kedacore/keda-metrics-adapter:1.2.0 \
--namespace keda --name keda kedacore/keda
Once KEDA is installed (which should be pretty quick since there is only one pod). You can try out KEDA autoscaling
on this chart by setting workers.keda.enabled=true
your helm command or in the values.yaml
.
(Note: KEDA does not support StatefulSets so you need to set worker.persistence.enabled
to false
)
helm repo add astronomer https://helm.astronomer.io
helm repo update
kubectl create namespace airflow
helm install airflow \
--set executor=CeleryExecutor \
--set workers.keda.enabled=true \
--set workers.persistence.enabled=false \
--namespace airflow \
astronomer/airflow
Install kind, and create a cluster:
We recommend testing with Kubernetes 1.15, as this image doesn't support Kubernetes 1.16+ for CeleryExecutor presently.
kind create cluster \
--image kindest/node:v1.15.7@sha256:e2df133f80ef633c53c0200114fce2ed5e1f6947477dbc83261a6a921169488d
Confirm it's up:
kubectl cluster-info --context kind-kind
Add Astronomer's Helm repo:
helm repo add astronomer https://helm.astronomer.io
helm repo update
Create namespace + install the chart:
kubectl create namespace airflow
helm install airflow --n airflow astronomer/airflow
It may take a few minutes. Confirm the pods are up:
kubectl get pods --all-namespaces
helm list -n airflow
Run kubectl port-forward svc/airflow-webserver 8080:8080 -n airflow
to port-forward the Airflow UI to http://localhost:8080/ to cofirm Airflow is working.
Build a Docker image from your DAGs:
-
Start a project using astro-cli, which will generate a Dockerfile, and load your DAGs in. You can test locally before pushing to kind with
astro airflow start
.mkdir my-airflow-project && cd my-airflow-project astro dev init
-
Then build the image:
docker build -t my-dags:0.0.1 .
-
Load the image into kind:
kind load docker-image my-dags:0.0.1
-
Upgrade Helm deployment:
helm upgrade airflow -n airflow \ --set images.airflow.repository=my-dags \ --set images.airflow.tag=0.0.1 \ astronomer/airflow
Check out our contributing guide!