English | 简体中文
The secondary development of vehicle violation task mainly focuses on the task of lane line segmentation model. PP-LiteSeg model is used to get the lane line data set bdd100k through fine-tune. The process is referred to PP-LiteSeg。
ppvehicle violation analysis divides the lane line into 4 categories
0 Background
1 double yellow line
2 Solid line
3 Dashed line
- For the bdd100k data set, we can combine the processing script provided by lane_to_mask.py and bdd100k repo to process the data into the data format required for segmentation.
# clone bdd100k:
git clone https://github.com/bdd100k/bdd100k.git
# copy lane_to_mask.py to bdd100k/
cp PaddleDetection/deploy/pipeline/tools/lane_to_mask.py bdd100k/
# preparation bdd100k env
cd bdd100k && pip install -r requirements.txt
#bdd100k to mask
python lane_to_mask.py -i dataset/labels/lane/polygons/lane_train.json -o /output_path
# -i means input path for bdd100k dataset label json,
# -o for output patn
- Organize data and store data in the following format:
dataset_root
|
|--images
| |--train
| |--image1.jpg
| |--image2.jpg
| |--...
| |--val
| |--image3.jpg
| |--image4.jpg
| |--...
| |--test
| |--image5.jpg
| |--image6.jpg
| |--...
|
|--labels
| |--train
| |--label1.jpg
| |--label2.jpg
| |--...
| |--val
| |--label3.jpg
| |--label4.jpg
| |--...
| |--test
| |--label5.jpg
| |--label6.jpg
| |--...
|
run create_dataset_list.py create txt file
python create_dataset_list.py <dataset_root> #dataset path
--type custom #dataset type,support cityscapes、custom
For other data and data annotation, please refer to PaddleSeg Prepare Custom Datasets
clone PaddleSeg:
git clone https://github.com/PaddlePaddle/PaddleSeg.git
prepapation env:
cd PaddleSeg
pip install -r requirements.txt
For details, please refer to PaddleSeg prepare configuration file.
exp: pp_liteseg_stdc2_bdd100k_1024x512.yml
batch_size: 16
iters: 50000
train_dataset:
type: Dataset
dataset_root: data/bdd100k #dataset path
train_path: data/bdd100k/train.txt #dataset train txt
num_classes: 4 #lane classes
mode: train
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 1024]
- type: RandomHorizontalFlip
- type: RandomAffine
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize
val_dataset:
type: Dataset
dataset_root: data/bdd100k #dataset path
val_path: data/bdd100k/val.txt #dataset val txt
num_classes: 4
mode: val
transforms:
- type: Normalize
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01 #0.01
end_lr: 0
power: 0.9
loss:
types:
- type: MixedLoss
losses:
- type: CrossEntropyLoss
- type: LovaszSoftmaxLoss
coef: [0.6, 0.4]
- type: MixedLoss
losses:
- type: CrossEntropyLoss
- type: LovaszSoftmaxLoss
coef: [0.6, 0.4]
- type: MixedLoss
losses:
- type: CrossEntropyLoss
- type: LovaszSoftmaxLoss
coef: [0.6, 0.4]
coef: [1, 1,1]
model:
type: PPLiteSeg
backbone:
type: STDC2
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet2.tar.gz #Pre-training model
#Single GPU training
export CUDA_VISIBLE_DEVICES=0 # Linux
# set CUDA_VISIBLE_DEVICES=0 # Windows
python train.py \
--config configs/pp_liteseg/pp_liteseg_stdc2_bdd100k_1024x512.yml \
--do_eval \
--use_vdl \
--save_interval 500 \
--save_dir output
--do_eval Whether to start the evaluation when saving the model. When starting, the best model will be saved to best according to mIoU model
--use_vdl Whether to enable visualdl to record training data
--save_interval 500 Number of steps between model saving
--save_dir output Model output path
if you want to use multiple gpus training, you need to set the environment variable CUDA_VISIBLE_DEVICES is specified as multiple gpus (if not specified, all gpus will be used by default), and the training script will be started using paddle.distributed.launch (because nccl is not supported under windows, multi-card training cannot be used):
export CUDA_VISIBLE_DEVICES=0,1,2,3 # 4 gpus
python -m paddle.distributed.launch train.py \
--config configs/pp_liteseg/pp_liteseg_stdc2_bdd100k_1024x512.yml \
--do_eval \
--use_vdl \
--save_interval 500 \
--save_dir output
After training, you can execute the following commands for performance evaluation:
python val.py \
--config configs/pp_liteseg/pp_liteseg_stdc2_bdd100k_1024x512.yml \
--model_path output/iter_1000/model.pdparams
Use the following command to export the trained model as a prediction deployment model.
python export.py \
--config configs/pp_liteseg/pp_liteseg_stdc2_bdd100k_1024x512.yml \
--model_path output/iter_1000/model.pdparams \
--save_dir output/inference_model
Profile in PP-Vehicle when used ./deploy/pipeline/config/infer_cfg_ppvehicle.yml
set model_dir
in LANE_SEG
.
LANE_SEG:
lane_seg_config: deploy/pipeline/config/lane_seg_config.yml
model_dir: output/inference_model
Then you can use -->to finish the task of updating the lane line segmentation model.