forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_to_mask.py
508 lines (418 loc) · 16.4 KB
/
lane_to_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# coding: utf8
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert poly2d to mask/bitmask."""
import os
from functools import partial
from multiprocessing import Pool
from typing import Callable, Dict, List
import matplotlib # type: ignore
import matplotlib.pyplot as plt # type: ignore
import numpy as np
from PIL import Image
from scalabel.common.parallel import NPROC
from scalabel.common.typing import NDArrayU8
from scalabel.label.io import group_and_sort, load
from scalabel.label.transforms import poly_to_patch
from scalabel.label.typing import Config, Frame, ImageSize, Label, Poly2D
from scalabel.label.utils import (
check_crowd,
check_ignored,
get_leaf_categories, )
from tqdm import tqdm
from bdd100k.common.logger import logger
from bdd100k.common.typing import BDD100KConfig
from bdd100k.common.utils import get_bdd100k_instance_id, load_bdd100k_config
from bdd100k.label.label import drivables, labels, lane_categories
from bdd100k.label.to_coco import parse_args
from bdd100k.label.to_scalabel import bdd100k_to_scalabel
IGNORE_LABEL = 255
STUFF_NUM = 30
LANE_DIRECTION_MAP = {"parallel": 0, "vertical": 1}
LANE_STYLE_MAP = {"solid": 0, "dashed": 1}
def frame_to_mask(
out_path: str,
shape: ImageSize,
colors: List[NDArrayU8],
poly2ds: List[List[Poly2D]],
with_instances: bool=True,
back_color: int=0,
closed: bool=True, ) -> None:
"""Converting a frame of poly2ds to mask/bitmask."""
assert len(colors) == len(poly2ds)
height, width = shape.height, shape.width
assert back_color >= 0
if with_instances:
img: NDArrayU8 = (
np.ones(
[height, width, 4], dtype=np.uint8) * back_color # type: ignore
)
else:
img = (
np.ones(
[height, width, 1], dtype=np.uint8) * back_color # type: ignore
)
if len(colors) == 0:
pil_img = Image.fromarray(img.squeeze())
pil_img.save(out_path)
matplotlib.use("Agg")
fig = plt.figure(facecolor="0")
fig.set_size_inches((width / fig.get_dpi()), height / fig.get_dpi())
ax = fig.add_axes([0, 0, 1, 1])
ax.axis("off")
ax.set_xlim(0, width)
ax.set_ylim(0, height)
ax.set_facecolor((0, 0, 0, 0))
ax.invert_yaxis()
for i, poly2d in enumerate(poly2ds):
for poly in poly2d:
ax.add_patch(
poly_to_patch(
poly.vertices,
poly.types,
# (0, 0, 0) for the background
color=(
((i + 1) >> 8) / 255.0,
((i + 1) % 255) / 255.0,
0.0, ),
closed=closed, ))
fig.canvas.draw()
out: NDArrayU8 = np.frombuffer(fig.canvas.tostring_rgb(), np.uint8)
out = out.reshape((height, width, -1)).astype(np.int32)
out = (out[..., 0] << 8) + out[..., 1]
plt.close()
for i, color in enumerate(colors):
# 0 is for the background
img[out == i + 1] = color
img[img == 255] = 0
pil_img = Image.fromarray(img.squeeze())
pil_img.save(out_path)
def set_instance_color(label: Label, category_id: int,
ann_id: int) -> NDArrayU8:
"""Set the color for an instance given its attributes and ID."""
attributes = label.attributes
if attributes is None:
truncated, occluded, crowd, ignored = 0, 0, 0, 0
else:
truncated = int(attributes.get("truncated", False))
occluded = int(attributes.get("occluded", False))
crowd = int(check_crowd(label))
ignored = int(check_ignored(label))
color: NDArrayU8 = np.array(
[
category_id & 255,
(truncated << 3) + (occluded << 2) + (crowd << 1) + ignored,
ann_id >> 8,
ann_id & 255,
],
dtype=np.uint8, )
return color
def set_lane_color(label: Label, category_id: int) -> NDArrayU8:
"""Set the color for the lane given its attributes and category."""
attributes = label.attributes
if attributes is None:
lane_direction, lane_style = 0, 0
else:
lane_direction = LANE_DIRECTION_MAP[str(
attributes.get("laneDirection", "parallel"))]
lane_style = LANE_STYLE_MAP[str(attributes.get("laneStyle", "solid"))]
#value = category_id + (lane_direction << 5) + (lane_style << 4)
value = category_id
if lane_style == 0 and (category_id == 3 or category_id == 2):
value = 1
if lane_style == 0:
value = 2
else:
value = 3
color: NDArrayU8 = np.array([value], dtype=np.uint8)
return color
def frames_to_masks(
nproc: int,
out_paths: List[str],
shapes: List[ImageSize],
colors_list: List[List[NDArrayU8]],
poly2ds_list: List[List[List[Poly2D]]],
with_instances: bool=True,
back_color: int=0,
closed: bool=True, ) -> None:
"""Execute the mask conversion in parallel."""
with Pool(nproc) as pool:
pool.starmap(
partial(
frame_to_mask,
with_instances=with_instances,
back_color=back_color,
closed=closed, ),
tqdm(
zip(out_paths, shapes, colors_list, poly2ds_list),
total=len(out_paths), ), )
def seg_to_masks(
frames: List[Frame],
out_base: str,
config: Config,
nproc: int=NPROC,
mode: str="sem_seg",
back_color: int=IGNORE_LABEL,
closed: bool=True, ) -> None:
"""Converting segmentation poly2d to 1-channel masks."""
os.makedirs(out_base, exist_ok=True)
img_shape = config.imageSize
out_paths: List[str] = []
shapes: List[ImageSize] = []
colors_list: List[List[NDArrayU8]] = []
poly2ds_list: List[List[List[Poly2D]]] = []
categories = dict(
sem_seg=labels, drivable=drivables, lane_mark=lane_categories)[mode]
cat_name2id = {
cat.name: cat.trainId
for cat in categories if cat.trainId != IGNORE_LABEL
}
logger.info("Preparing annotations for Semseg to Bitmasks")
for image_anns in tqdm(frames):
# Mask in .png format
image_name = image_anns.name.replace(".jpg", ".png")
image_name = os.path.split(image_name)[-1]
out_path = os.path.join(out_base, image_name)
out_paths.append(out_path)
if img_shape is None:
if image_anns.size is not None:
img_shape = image_anns.size
else:
raise ValueError("Image shape not defined!")
shapes.append(img_shape)
colors: List[NDArrayU8] = []
poly2ds: List[List[Poly2D]] = []
colors_list.append(colors)
poly2ds_list.append(poly2ds)
if image_anns.labels is None:
continue
for label in image_anns.labels:
if label.category not in cat_name2id:
continue
if label.poly2d is None:
continue
category_id = cat_name2id[label.category]
if mode in ["sem_seg", "drivable"]:
color: NDArrayU8 = np.array([category_id], dtype=np.uint8)
else:
color = set_lane_color(label, category_id)
colors.append(color)
poly2ds.append(label.poly2d)
logger.info("Start Conversion for Seg to Masks")
frames_to_masks(
nproc,
out_paths,
shapes,
colors_list,
poly2ds_list,
with_instances=False,
back_color=back_color,
closed=closed, )
ToMasksFunc = Callable[[List[Frame], str, Config, int], None]
semseg_to_masks: ToMasksFunc = partial(
seg_to_masks, mode="sem_seg", back_color=IGNORE_LABEL, closed=True)
drivable_to_masks: ToMasksFunc = partial(
seg_to_masks,
mode="drivable",
back_color=len(drivables) - 1,
closed=True, )
lanemark_to_masks: ToMasksFunc = partial(
seg_to_masks, mode="lane_mark", back_color=IGNORE_LABEL, closed=False)
def insseg_to_bitmasks(frames: List[Frame],
out_base: str,
config: Config,
nproc: int=NPROC) -> None:
"""Converting instance segmentation poly2d to bitmasks."""
os.makedirs(out_base, exist_ok=True)
img_shape = config.imageSize
out_paths: List[str] = []
shapes: List[ImageSize] = []
colors_list: List[List[NDArrayU8]] = []
poly2ds_list: List[List[List[Poly2D]]] = []
categories = get_leaf_categories(config.categories)
cat_name2id = {cat.name: i + 1 for i, cat in enumerate(categories)}
logger.info("Preparing annotations for InsSeg to Bitmasks")
for image_anns in tqdm(frames):
ann_id = 0
# Bitmask in .png format
image_name = image_anns.name.replace(".jpg", ".png")
image_name = os.path.split(image_name)[-1]
out_path = os.path.join(out_base, image_name)
out_paths.append(out_path)
if img_shape is None:
if image_anns.size is not None:
img_shape = image_anns.size
else:
raise ValueError("Image shape not defined!")
shapes.append(img_shape)
colors: List[NDArrayU8] = []
poly2ds: List[List[Poly2D]] = []
colors_list.append(colors)
poly2ds_list.append(poly2ds)
labels_ = image_anns.labels
if labels_ is None or len(labels_) == 0:
continue
# Scores higher, rendering later
if labels_[0].score is not None:
labels_ = sorted(labels_, key=lambda label: float(label.score))
for label in labels_:
if label.poly2d is None:
continue
if label.category not in cat_name2id:
continue
ann_id += 1
category_id = cat_name2id[label.category]
color = set_instance_color(label, category_id, ann_id)
colors.append(color)
poly2ds.append(label.poly2d)
logger.info("Start conversion for InsSeg to Bitmasks")
frames_to_masks(nproc, out_paths, shapes, colors_list, poly2ds_list)
def panseg_to_bitmasks(frames: List[Frame],
out_base: str,
config: Config,
nproc: int=NPROC) -> None:
"""Converting panoptic segmentation poly2d to bitmasks."""
os.makedirs(out_base, exist_ok=True)
img_shape = config.imageSize
out_paths: List[str] = []
shapes: List[ImageSize] = []
colors_list: List[List[NDArrayU8]] = []
poly2ds_list: List[List[List[Poly2D]]] = []
cat_name2id = {cat.name: cat.id for cat in labels}
logger.info("Preparing annotations for InsSeg to Bitmasks")
for image_anns in tqdm(frames):
cur_ann_id = STUFF_NUM
# Bitmask in .png format
image_name = image_anns.name.replace(".jpg", ".png")
image_name = os.path.split(image_name)[-1]
out_path = os.path.join(out_base, image_name)
out_paths.append(out_path)
if img_shape is None:
if image_anns.size is not None:
img_shape = image_anns.size
else:
raise ValueError("Image shape not defined!")
shapes.append(img_shape)
colors: List[NDArrayU8] = []
poly2ds: List[List[Poly2D]] = []
colors_list.append(colors)
poly2ds_list.append(poly2ds)
labels_ = image_anns.labels
if labels_ is None or len(labels_) == 0:
continue
# Scores higher, rendering later
if labels_[0].score is not None:
labels_ = sorted(labels_, key=lambda label: float(label.score))
for label in labels_:
if label.poly2d is None:
continue
if label.category not in cat_name2id:
continue
category_id = cat_name2id[label.category]
if category_id == 0:
continue
if category_id <= STUFF_NUM:
ann_id = category_id
else:
cur_ann_id += 1
ann_id = cur_ann_id
color = set_instance_color(label, category_id, ann_id)
colors.append(color)
poly2ds.append(label.poly2d)
logger.info("Start conversion for PanSeg to Bitmasks")
frames_to_masks(nproc, out_paths, shapes, colors_list, poly2ds_list)
def segtrack_to_bitmasks(frames: List[Frame],
out_base: str,
config: Config,
nproc: int=NPROC) -> None:
"""Converting segmentation tracking poly2d to bitmasks."""
frames_list = group_and_sort(frames)
img_shape = config.imageSize
out_paths: List[str] = []
shapes: List[ImageSize] = []
colors_list: List[List[NDArrayU8]] = []
poly2ds_list: List[List[List[Poly2D]]] = []
categories = get_leaf_categories(config.categories)
cat_name2id = {cat.name: i + 1 for i, cat in enumerate(categories)}
logger.info("Preparing annotations for SegTrack to Bitmasks")
for video_anns in tqdm(frames_list):
global_instance_id: int = 1
instance_id_maps: Dict[str, int] = {}
video_name = video_anns[0].videoName
out_dir = os.path.join(out_base, video_name)
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
for image_anns in video_anns:
# Bitmask in .png format
image_name = image_anns.name.replace(".jpg", ".png")
image_name = os.path.split(image_name)[-1]
out_path = os.path.join(out_dir, image_name)
out_paths.append(out_path)
if img_shape is None:
if image_anns.size is not None:
img_shape = image_anns.size
else:
raise ValueError("Image shape not defined!")
shapes.append(img_shape)
colors: List[NDArrayU8] = []
poly2ds: List[List[Poly2D]] = []
colors_list.append(colors)
poly2ds_list.append(poly2ds)
labels_ = image_anns.labels
if labels_ is None or len(labels_) == 0:
continue
# Scores higher, rendering later
if labels_[0].score is not None:
labels_ = sorted(labels_, key=lambda label: float(label.score))
for label in labels_:
if label.poly2d is None:
continue
if label.category not in cat_name2id:
continue
instance_id, global_instance_id = get_bdd100k_instance_id(
instance_id_maps, global_instance_id, label.id)
category_id = cat_name2id[label.category]
color = set_instance_color(label, category_id, instance_id)
colors.append(color)
poly2ds.append(label.poly2d)
logger.info("Start Conversion for SegTrack to Bitmasks")
frames_to_masks(nproc, out_paths, shapes, colors_list, poly2ds_list)
def main() -> None:
"""Main function."""
args = parse_args()
args.mode = "lane_mark"
os.environ["QT_QPA_PLATFORM"] = "offscreen" # matplotlib offscreen render
convert_funcs: Dict[str, ToMasksFunc] = dict(
sem_seg=semseg_to_masks,
drivable=drivable_to_masks,
lane_mark=lanemark_to_masks,
pan_seg=panseg_to_bitmasks,
ins_seg=insseg_to_bitmasks,
seg_track=segtrack_to_bitmasks, )
dataset = load(args.input, args.nproc)
if args.config is not None:
bdd100k_config = load_bdd100k_config(args.config)
elif dataset.config is not None:
bdd100k_config = BDD100KConfig(config=dataset.config)
else:
bdd100k_config = load_bdd100k_config(args.mode)
if args.mode in ["ins_seg", "seg_track"]:
frames = bdd100k_to_scalabel(dataset.frames, bdd100k_config)
else:
frames = dataset.frames
convert_funcs[args.mode](frames, args.output, bdd100k_config.scalabel,
args.nproc)
logger.info("Finished!")
if __name__ == "__main__":
main()