Skip to content

Commit

Permalink
[BugFix] Fix RoPE error in Llama 3.1 (vllm-project#6693)
Browse files Browse the repository at this point in the history
  • Loading branch information
WoosukKwon authored Jul 23, 2024
1 parent 0aa1b78 commit 125975b
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 30 deletions.
53 changes: 26 additions & 27 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,15 +154,6 @@ def __init__(
self.hf_text_config = get_hf_text_config(self.hf_config)
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)

if (getattr(self.hf_config, "max_position_embeddings", 0) == 131072
and getattr(self.hf_config, "rope_scaling", None) is None):
# Note(simon): this is a special case for a model that doesn't
# supply rope_scaling. We should remove this once the model is
# updated.
self.hf_config.update({"rope_scaling": {
"type": "extended",
}})

if (not self.disable_sliding_window
and self.hf_text_config.model_type == "gemma2"
and self.hf_text_config.sliding_window is not None):
Expand Down Expand Up @@ -1492,24 +1483,32 @@ def _get_and_verify_max_len(
derived_max_model_len = default_max_len

rope_scaling = getattr(hf_config, "rope_scaling", None)
# The correct one should be "longrope", kept "su" here
# to be backward compatible
if rope_scaling is not None and rope_scaling["type"] not in {
"su", "longrope", "extended"
}:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"with rope_scaling. Please raise an issue so we can "
"investigate.")
assert "factor" in rope_scaling
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if rope_scaling is not None:
if "type" in rope_scaling:
rope_type = rope_scaling["type"]
elif "rope_type" in rope_scaling:
rope_type = rope_scaling["rope_type"]
else:
raise ValueError(
"rope_scaling must have a 'type' or 'rope_type' key.")

# The correct one should be "longrope", kept "su" here
# to be backward compatible
if rope_type not in ("su", "longrope", "llama3"):
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"with rope_scaling. Please raise an issue so we can "
"investigate.")

assert "factor" in rope_scaling
scaling_factor = rope_scaling["factor"]
if rope_type == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor

# If the user specified a max length, make sure it is smaller than the
# derived length from the HF model config.
Expand Down
7 changes: 4 additions & 3 deletions vllm/model_executor/layers/rotary_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -794,12 +794,13 @@ def get_rope(
rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base,
is_neox_style, dtype)
else:
scaling_type = rope_scaling["type"]
scaling_type = rope_scaling[
"type"] if "type" in rope_scaling else rope_scaling["rope_type"]
# The correct one should be "longrope" but keep "su" here
# for backward compatible
if scaling_type not in {"su", "longrope", "extended"}:
if scaling_type not in {"su", "longrope", "llama3"}:
scaling_factor = rope_scaling["factor"]
if scaling_type == "extended":
if scaling_type == "llama3":
rotary_emb = ExtendedRotaryEmbedding(head_size, rotary_dim,
max_position, base,
is_neox_style, dtype)
Expand Down

0 comments on commit 125975b

Please sign in to comment.