A suite of neural-network architectures, training algorithms and useful utility functions written in python.
A short example usecase (data not actually provided):
from network import NeuralNet
from backprop import train
from layer import LogisticLayer, LinearLayer, SoftMaxLayer
from metrics import error
#to load matlab format data
from scipy.io import loadmat
mnist = loadmat('MNIST60k.mat')
training_data = mnist['train']
validation_data = mnist['valid']
model = NeuralNet([LinearLayer(784), LogisticLayer(1000), SoftMaxLayer(10)])
epochs = 1000
#Train the model using backprop
for epoch in range(epochs):
#do a single iteration of backprop
train(model, training_data['input'], training_data['target'])
#evaluate on validation set
valid_error = error(model, validation_data['input'], validation_data['target'])
print 'EPOCH %d VALID CROSS ENTROPY %.5e' % valid_error