Skip to content

The official implementation of "Which Shortcut Solution Do Question Answering Models Prefer to Learn?" (AAAI-23)

License

Notifications You must be signed in to change notification settings

KazutoshiShinoda/ShortcutLearnability

Repository files navigation

ShortcutLearnability

This is the official implementation of our paper "Which Shortcut Solution Do Question Answering Models Prefer to Learn?" (Kazutoshi Shinoda, Saku Sugawara, Akiko Aizawa) at AAAI-23.

0. Environments and Setups

  • torch==1.10
  • transformers==4.18.0

The used random seeds were 42, 43, 44, 45, and 46.

We basically used the same hyperparameters as the original papers.

1. Defining shortcut and anti-shortcut examples

  • Extractive QA

    • analyze_datasets.py

      data="${SQuAD_DIR}/train-v1.1.json"
      n_workers="4"
      nohup python -u analyze_datasets.py --data_path ${data} --n_workers ${n_workers} --do_light --analyses answer-position-sentence question-context-ngram-overlap-per-sent question-context-similar-sent answer-candidates > log/analysis &
      
  • Multiple-choice QA

    • PreviewQAExamples&BiasAnalysis.ipynb

2. Behavioral Tests: Learning from Biased Training Sets

  • Training and Evaluation

    • Extractive QA

      SEED="42"
      GPU_ID="0"
      RUN_NAME="bert_squad_3d-biased-aps-qcss-ac_seed${SEED}"
      PJ_NAME="exqa-squad"
      CUDA_VISIBLE_DEVICES=$GPU_ID nohup python -u run_squad.py --project $PJ_NAME \
      --model_type bert \
      --model_name_or_path bert-base-uncased --do_lower_case \
      --do_train --do_eval --output_dir $RE_EXQA_OUT_DIR/$RUN_NAME --warmup_ratio 0.1 --num_train_epochs 10 --save_steps 200 --logging_train_steps 50 --log_before_train --evaluate_during_training --overwrite_output_dir --threads 4 --do_biased_train \
      --bias_1 answer-position-sentence \
      --bias_1_included_in 0 \
      --bias_2 question-context-similar-sent \
      --bias_2_included_in 0 \
      --bias_3 answer-candidates \
      --bias_3_included_in 1 \
      --train_file $SQuAD_DIR/train-v1.1.json \
      --predict_file $SQuAD_DIR/dev-v1.1.json \
      --seed $SEED > log/$RUN_NAME &
      
    • Multiple-choice QA

      SEED="42"
      RUN_NAME="bert_race_biased-maxlo-1-top50-1_seed${SEED}"
      CUDA_VISIBLE_DEVICES=1 WANDB_PROJECT="mcqa-race" nohup python -u run_multiple_choice.py \
      --task_name race --model_name_or_path bert-base-uncased \
      --bias_1 correct-has-max-lexical-overlap \
      --bias_1_included_in 1 \
      --bias_2 only-correct-has-top50-words \
      --bias_2_included_in 1 \
      --do_biased_train --do_train --do_eval --do_predict \
      --predict_all_checkpoints --data_dir $RACE_DIR \
      --learning_rate 1e-5 --num_train_epochs 10 --max_seq_length 512 \
      --output_dir $RE_MCQA_OUT_DIR/$RUN_NAME \
      --per_device_eval_batch_size 16 \
      --per_device_train_batch_size 8 \
      --gradient_accumulation_steps 4 \
      --max_grad_norm 1 \
      --adam_beta1 0.9 \
      --adam_beta2 0.98 \
      --adam_epsilon 1e-6 \
      --warmup_ratio 0.06 \
      --weight_decay 0.01 \
      --logging_steps 10 \
      --save_steps 100 \
      --eval_steps 100 \
      --evaluate_during_training \
      --seed $SEED \
      --overwrite_output > log/$RUN_NAME &
      
  • Results

    • Biased-AntiBiased-Evaluation.ipynb

3. Visualizing the Loss Landscape

  • Experiments (This will take few days.)

    • Training
    SEED="42"
    RUN_NAME="bert_squad_vis-aps_1400-ex_seed42"
    PJ_NAME="exqa-squad"
    CUDA_VISIBLE_DEVICES=0 nohup python -u run_squad.py --project $PJ_NAME --model_type bert --model_name_or_path bert-base-uncased --do_lower_case --do_train --do_eval --do_fewshot_train --num_fewshot_examples 1400 --output_dir $RE_EXQA_OUT_DIR/$RUN_NAME --warmup_ratio 0.1 --num_train_epochs 10 --logging_train_steps 1000 --evaluate_during_training --overwrite_output_dir --threads 4 --do_biased_train --bias_1 answer-position-sentence --bias_1_included_in 0 --bias_2 question-context-similar-sent --bias_2_not_equal answer-position-sentence --bias_3 answer-candidates --bias_3_larger_than 2 --train_file $SQuAD_DIR/train-v1.1.json --predict_file $SQuAD_DIR/dev-v1.1.json --seed $SEED > log/$RUN_NAME &
    
    • Computing the surface
    MODEL_ID="bert_squad_vis-aps_1400-ex_seed42"
    PLOT_ID="bert_squad"
    WIDTH="101"
    CUDA_VISIBLE_DEVICES=2 nohup python -u plot_surface.py \
    --plot_id $PLOT_ID \
    --task_type ex-qa \
    --task_name squad \
    --surface_id ${MODEL_ID}_width-${WIDTH} \
    --base_model_path $RE_EXQA_OUT_DIR/bert_squad \
    --model_path $RE_EXQA_OUT_DIR/$MODEL_ID \
    --batch_size 256 \
    --width $WIDTH \
    --do_setup \
    --do_random_plot > log/${MODEL_ID}_width-${WIDTH} &
    
  • Visualization

4. Rissanen Shortcut Analysis

  • Training and Evaluation

    • Extractive QA
    PJ_NAME="exqa-squad"
    SEED="42"
    GPU_ID="0"
    NUM_FEWSHOT="1400"
    KEY="ex-long"
    RUN_NAME="bert_squad_mdl-aps_${KEY}_seed${SEED}"
    CUDA_VISIBLE_DEVICES=${GPU_ID} nohup python -u run_squad.py --project $PJ_NAME --model_type bert \
    --model_name_or_path bert-base-uncased --do_lower_case --do_train \
    --do_online_code --do_fewshot_train --num_fewshot_examples $NUM_FEWSHOT \
    --do_fewshot_unique_features --do_exclude_long_context \
    --seed $SEED --output_dir $RE_EXQA_OUT_DIR/MDL/$RUN_NAME \
    --warmup_ratio 0.1 --overwrite_output_dir --threads 4 --do_biased_train \
    --bias_1 answer-position-sentence --bias_1_included_in 0 \
    --bias_2 question-context-similar-sent --bias_2_not_equal answer-position-sentence \
    --bias_3 answer-candidates --bias_3_larger_than 2 \
    --train_file $SQuAD_DIR/train-v1.1.json --predict_file $SQuAD_DIR/dev-v1.1.json --seed $SEED > log/$RUN_NAME &
    
    • Multiple-choice QA
      • run_multiple_choice.py
  • Results

    • RissanenDataAnalysis.ipynb

5. Balancing Shortcut and Anti-shortcut Examples

  • Training and Evaluation

    • Extractive QA
    SEED="42"
    GPU_ID="1"
    RATIO="0.8"
    RUN_NAME="bert_squad_1d-blend-aps-${RATIO}_5k-ex_seed${SEED}"
    PJ_NAME="exqa-squad"
    CUDA_VISIBLE_DEVICES=$GPU_ID nohup python -u run_squad.py --project $PJ_NAME \
    --model_type bert \
    --model_name_or_path bert-base-uncased --do_lower_case \
    --do_train --do_eval --output_dir $RE_EXQA_OUT_DIR/$RUN_NAME --warmup_ratio 0.1 --num_train_epochs 10 --logging_train_steps 1000 --save_steps 1000 --num_total_examples 5000 --overwrite_output_dir --threads 4 \
    --do_biased_train \
    --bias_1 answer-position-sentence \
    --bias_1_included_in 0 \
    --bias_2 answer-candidates \
    --bias_2_larger_than 1 \
    --do_blend_anti_biased \
    --anti_biased_ratio $RATIO \
    --anti_bias_1 answer-position-sentence \
    --anti_bias_1_larger_than 1 \
    --anti_bias_2 answer-candidates \
    --anti_bias_2_larger_than 1 \
    --train_file $SQuAD_DIR/train-v1.1.json \
    --predict_file $SQuAD_DIR/dev-v1.1.json \
    --seed $SEED > log/$RUN_NAME &
    
    • Multiple-choice QA
      • run_multiple_choice.py
  • Results

    • Biased-AntiBiased-Evaluation.ipynb

Citation

If you find our codes useful, please cite our paper.

@article{Shinoda_Sugawara_Aizawa_2023,
  title={Which Shortcut Solution Do Question Answering Models Prefer to Learn?},
  volume={37},
  url={https://ojs.aaai.org/index.php/AAAI/article/view/26590},
  DOI={10.1609/aaai.v37i11.26590},
  number={11},
  journal={Proceedings of the AAAI Conference on Artificial Intelligence},
  author={Shinoda, Kazutoshi and Sugawara, Saku and Aizawa, Akiko},
  year={2023},
  month={Jun.},
  pages={13564-13572}
}

Contact

Please feel free to contact me if you have any suggestions or questions.

Email: [email protected] / X(Twitter): @shino__c

About

The official implementation of "Which Shortcut Solution Do Question Answering Models Prefer to Learn?" (AAAI-23)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published