Recognizing mice ictal
For real-time application
-
Download models from URL https://drive.google.com/file/d/11LcXG6e9mM_TbeN8iY1CJVlokP8xX9lo/view?usp=sharing, https://drive.google.com/file/d/1Cag9Zr0HvJzWRy839qgaBAMmj1b-TdcX/view?usp=sharing, https://drive.google.com/file/d/1WqqDb6i-lLCwGoYFfdoUthNUaSrugfh7/view?usp=sharing
-
Place the models in the right path
RGB_Kinetics_64f -> ../pretrained_model
model_mice.pth -> ./results_mice_resnext101
Using command in comment.txt
-------------------------------real_time_resnext101_mice------------------------------------
python real_time_demo.py --n_classes 2 --model resnext --model_depth 101 \
--sample_duration 64 --annotation_path "dataset/mice_labels" \
--resume_path1 "results_mice_resnext101/save_71_max.pth" \
--inputs "07_51-52.mp4"
For training
- Using make_list.py to make the list of training and testing;
- Placing generated training/testing list to dataset/mice_labels
- Using extract_frames.py to transform videos to frames
- Using command in comment.txt for training
For testing online (.mp4 file)
Using command in comment.txt
python test_plus_mice_online.py --batch_size 1 --n_classes 2 --model resnext --model_depth 101
--log 1 --dataset MICE_online --modality RGB --sample_duration 64 --split 1 --only_RGB
--resume_path1 "results_mice_resnext101/model_mice.pth"
--frame_dir "/home/katou2/github_home/0609_epilepsy/mice"
--annotation_path "dataset/mice_labels"
--result_path "results_mice_resnext101/"
--n_workers 0 --test_file 'test_mice.txt'