Skip to content

Commit

Permalink
Add a KrylovSolver for each method (#271)
Browse files Browse the repository at this point in the history
* Add in-place Krylov methods
  • Loading branch information
amontoison authored May 10, 2021
1 parent ac55536 commit d8c8a5e
Show file tree
Hide file tree
Showing 36 changed files with 1,715 additions and 450 deletions.
33 changes: 31 additions & 2 deletions docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,36 @@ Krylov.AdjointStats
## Solver Types

```@docs
Krylov.KrylovSolver
Krylov.MinresSolver
KrylovSolver
MinresSolver
CgSolver
CrSolver
SymmlqSolver
CgLanczosSolver
CgLanczosShiftSolver
MinresQlpSolver
DqgmresSolver
DiomSolver
UsymlqSolver
UsymqrSolver
TricgSolver
TrimrSolver
TrilqrSolver
CgsSolver
BicgstabSolver
BilqSolver
QmrSolver
BilqrSolver
CglsSolver
CrlsSolver
CgneSolver
CrmrSolver
LslqSolver
LsqrSolver
LsmrSolver
LnlqSolver
CraigSolver
CraigmrSolver
```

## Utilities
Expand All @@ -22,6 +50,7 @@ Krylov.roots_quadratic
Krylov.sym_givens
Krylov.to_boundary
Krylov.vec2str
Krylov.ktypeof
Krylov.kzeros
Krylov.kones
```
30 changes: 18 additions & 12 deletions src/bicgstab.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# Alexis Montoison, <[email protected]>
# Montréal, October 2020.

export bicgstab
export bicgstab, bicgstab!

"""
(x, stats) = bicgstab(A, b::AbstractVector{T}; c::AbstractVector{T}=b,
Expand Down Expand Up @@ -41,9 +41,14 @@ This implementation allows a left preconditioner `M` and a right preconditioner
* H. A. van der Vorst, *Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems*, SIAM Journal on Scientific and Statistical Computing, 13(2), pp. 631--644, 1992.
* G. L.G. Sleijpen and D. R. Fokkema, *BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum*, Electronic Transactions on Numerical Analysis, 1, pp. 11--32, 1993.
"""
function bicgstab(A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,
M=opEye(), N=opEye(), atol :: T=eps(T), rtol :: T=eps(T),
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where T <: AbstractFloat
function bicgstab(A, b :: AbstractVector{T}; kwargs...) where T <: AbstractFloat
solver = BicgstabSolver(A, b)
bicgstab!(solver, A, b; kwargs...)
end

function bicgstab!(solver :: BicgstabSolver{T,S}, A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,
M=opEye(), N=opEye(), atol :: T=eps(T), rtol :: T=eps(T),
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where {T <: AbstractFloat, S <: DenseVector{T}}

n, m = size(A)
m == n || error("System must be square")
Expand All @@ -56,18 +61,19 @@ function bicgstab(A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,

# Check type consistency
eltype(A) == T || error("eltype(A) ≠ $T")
ktypeof(b) == S || error("ktypeof(b) ≠ $S")
ktypeof(c) == S || error("ktypeof(c) ≠ $S")
MisI || (eltype(M) == T) || error("eltype(M) ≠ $T")
NisI || (eltype(N) == T) || error("eltype(N) ≠ $T")

# Determine the storage type of b
S = typeof(b)

# Set up workspace.
x = kzeros(S, n) # x₀
s = kzeros(S, n) # s₀
v = kzeros(S, n) # v₀
r = copy(M * b) # r₀
p = copy(r) # p₁
x, s, v, r, p = solver.x, solver.s, solver.v, solver.r, solver.p

x .= zero(T) # x₀
s .= zero(T) # s₀
v .= zero(T) # v₀
r .= (M * b) # r₀
p .= r # p₁

α = one(T) # α₀
ω = one(T) # ω₀
Expand Down
32 changes: 19 additions & 13 deletions src/bilq.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
# Alexis Montoison, <[email protected]>
# Montreal, February 2019.

export bilq
export bilq, bilq!

"""
(x, stats) = bilq(A, b::AbstractVector{T}; c::AbstractVector{T}=b,
Expand All @@ -29,9 +29,14 @@ when it exists. The transfer is based on the residual norm.
* A. Montoison and D. Orban, *BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property*, SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
"""
function bilq(A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,
atol :: T=eps(T), rtol :: T=eps(T), transfer_to_bicg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where T <: AbstractFloat
function bilq(A, b :: AbstractVector{T}; kwargs...) where T <: AbstractFloat
solver = BilqSolver(A, b)
bilq!(solver, A, b; kwargs...)
end

function bilq!(solver :: BilqSolver{T,S}, A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,
atol :: T=eps(T), rtol :: T=eps(T), transfer_to_bicg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where {T <: AbstractFloat, S <: DenseVector{T}}

n, m = size(A)
m == n || error("System must be square")
Expand All @@ -40,15 +45,17 @@ function bilq(A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,

# Check type consistency
eltype(A) == T || error("eltype(A) ≠ $T")
ktypeof(b) == S || error("ktypeof(b) ≠ $S")
ktypeof(c) == S || error("ktypeof(c) ≠ $S")

# Compute the adjoint of A
Aᵀ = A'

# Determine the storage type of b
S = typeof(b)
# Set up workspace.
uₖ₋₁, uₖ, vₖ₋₁, vₖ, x, d̅ = solver.uₖ₋₁, solver.uₖ, solver.vₖ₋₁, solver.vₖ, solver.x, solver.

# Initial solution x₀ and residual norm ‖r₀‖.
x = kzeros(S, n)
x .= zero(T)
bNorm = @knrm2(n, b) # ‖r₀‖
bNorm == 0 && return (x, SimpleStats(true, false, [bNorm], T[], "x = 0 is a zero-residual solution"))

Expand All @@ -64,16 +71,15 @@ function bilq(A, b :: AbstractVector{T}; c :: AbstractVector{T}=b,
bᵗc = @kdot(n, b, c) # ⟨b,c⟩
bᵗc == 0 && return (x, SimpleStats(false, false, [bNorm], T[], "Breakdown bᵀc = 0"))

# Set up workspace.
βₖ = (abs(bᵗc)) # β₁γ₁ = bᵀc
γₖ = bᵗc / βₖ # β₁γ₁ = bᵀc
vₖ₋₁ = kzeros(S, n) # v₀ = 0
uₖ₋₁ = kzeros(S, n) # u₀ = 0
vₖ = b / βₖ # v₁ = b / β₁
uₖ = c / γₖ # u₁ = c / γ₁
vₖ₋₁ .= zero(T) # v₀ = 0
uₖ₋₁ .= zero(T) # u₀ = 0
vₖ .= b ./ βₖ # v₁ = b / β₁
uₖ .= c ./ γₖ # u₁ = c / γ₁
cₖ₋₁ = cₖ = -one(T) # Givens cosines used for the LQ factorization of Tₖ
sₖ₋₁ = sₖ = zero(T) # Givens sines used for the LQ factorization of Tₖ
= kzeros(S, n) # Last column of D̅ₖ = Vₖ(Qₖ)ᵀ
.= zero(T) # Last column of D̅ₖ = Vₖ(Qₖ)ᵀ
ζₖ₋₁ = ζbarₖ = zero(T) # ζₖ₋₁ and ζbarₖ are the last components of z̅ₖ = (L̅ₖ)⁻¹β₁e₁
ζₖ₋₂ = ηₖ = zero(T) # ζₖ₋₂ and ηₖ are used to update ζₖ₋₁ and ζbarₖ
δbarₖ₋₁ = δbarₖ = zero(T) # Coefficients of Lₖ₋₁ and L̅ₖ modified over the course of two iterations
Expand Down
37 changes: 22 additions & 15 deletions src/bilqr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
# Alexis Montoison, <[email protected]>
# Montreal, July 2019.

export bilqr
export bilqr, bilqr!

"""
(x, t, stats) = bilqr(A, b::AbstractVector{T}, c::AbstractVector{T};
Expand All @@ -32,9 +32,14 @@ BiCG point, when it exists. The transfer is based on the residual norm.
* A. Montoison and D. Orban, *BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property*, SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
"""
function bilqr(A, b :: AbstractVector{T}, c :: AbstractVector{T};
atol :: T=eps(T), rtol :: T=eps(T), transfer_to_bicg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where T <: AbstractFloat
function bilqr(A, b :: AbstractVector{T}, c :: AbstractVector{T}; kwargs...) where T <: AbstractFloat
solver = BilqrSolver(A, b)
bilqr!(solver, A, b, c; kwargs...)
end

function bilqr!(solver :: BilqrSolver{T,S}, A, b :: AbstractVector{T}, c :: AbstractVector{T};
atol :: T=eps(T), rtol :: T=eps(T), transfer_to_bicg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false) where {T <: AbstractFloat, S <: DenseVector{T}}

n, m = size(A)
m == n || error("Systems must be square")
Expand All @@ -44,19 +49,21 @@ function bilqr(A, b :: AbstractVector{T}, c :: AbstractVector{T};

# Check type consistency
eltype(A) == T || error("eltype(A) ≠ $T")
ktypeof(b) == S || error("ktypeof(b) ≠ $S")
ktypeof(c) == S || error("ktypeof(c) ≠ $S")

# Compute the adjoint of A
Aᵀ = A'

# Determine the storage type of b
S = typeof(b)
# Set up workspace.
uₖ₋₁, uₖ, vₖ₋₁, vₖ, x, t, d̅, wₖ₋₃, wₖ₋₂ = solver.uₖ₋₁, solver.uₖ, solver.vₖ₋₁, solver.vₖ, solver.x, solver.t, solver.d̅, solver.wₖ₋₃, solver.wₖ₋₂

# Initial solution x₀ and residual norm ‖r₀‖ = ‖b - Ax₀‖.
x = kzeros(S, n) # x₀
x .= zero(T) # x₀
bNorm = @knrm2(n, b) # rNorm = ‖r₀‖

# Initial solution t₀ and residual norm ‖s₀‖ = ‖c - Aᵀt₀‖.
t = kzeros(S, n) # t₀
t .= zero(T) # t₀
cNorm = @knrm2(n, c) # sNorm = ‖s₀‖

iter = 0
Expand All @@ -76,21 +83,21 @@ function bilqr(A, b :: AbstractVector{T}, c :: AbstractVector{T};
# Set up workspace.
βₖ = (abs(bᵗc)) # β₁γ₁ = bᵀc
γₖ = bᵗc / βₖ # β₁γ₁ = bᵀc
vₖ₋₁ = kzeros(S, n) # v₀ = 0
uₖ₋₁ = kzeros(S, n) # u₀ = 0
vₖ = b / βₖ # v₁ = b / β₁
uₖ = c / γₖ # u₁ = c / γ₁
vₖ₋₁ .= zero(T) # v₀ = 0
uₖ₋₁ .= zero(T) # u₀ = 0
vₖ .= b ./ βₖ # v₁ = b / β₁
uₖ .= c ./ γₖ # u₁ = c / γ₁
cₖ₋₁ = cₖ = -one(T) # Givens cosines used for the LQ factorization of Tₖ
sₖ₋₁ = sₖ = zero(T) # Givens sines used for the LQ factorization of Tₖ
= kzeros(S, n) # Last column of D̅ₖ = Vₖ(Qₖ)ᵀ
.= zero(T) # Last column of D̅ₖ = Vₖ(Qₖ)ᵀ
ζₖ₋₁ = ζbarₖ = zero(T) # ζₖ₋₁ and ζbarₖ are the last components of z̅ₖ = (L̅ₖ)⁻¹β₁e₁
ζₖ₋₂ = ηₖ = zero(T) # ζₖ₋₂ and ηₖ are used to update ζₖ₋₁ and ζbarₖ
δbarₖ₋₁ = δbarₖ = zero(T) # Coefficients of Lₖ₋₁ and L̅ₖ modified over the course of two iterations
ψbarₖ₋₁ = ψₖ₋₁ = zero(T) # ψₖ₋₁ and ψbarₖ are the last components of h̅ₖ = Qₖγ₁e₁
norm_vₖ = bNorm / βₖ # ‖vₖ‖ is used for residual norm estimates
ϵₖ₋₃ = λₖ₋₂ = zero(T) # Components of Lₖ₋₁
wₖ₋₃ = kzeros(S, n) # Column k-3 of Wₖ = Uₖ(Lₖ)⁻ᵀ
wₖ₋₂ = kzeros(S, n) # Column k-2 of Wₖ = Uₖ(Lₖ)⁻ᵀ
wₖ₋₃ .= zero(T) # Column k-3 of Wₖ = Uₖ(Lₖ)⁻ᵀ
wₖ₋₂ .= zero(T) # Column k-2 of Wₖ = Uₖ(Lₖ)⁻ᵀ
τₖ = zero(T) # τₖ is used for the dual residual norm estimate

# Stopping criterion.
Expand Down
27 changes: 16 additions & 11 deletions src/cg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# Dominique Orban, <[email protected]>
# Salt Lake City, UT, March 2015.

export cg
export cg, cg!


"""
Expand All @@ -37,10 +37,15 @@ with `n = length(b)`.
* M. R. Hestenes and E. Stiefel, *Methods of conjugate gradients for solving linear systems*, Journal of Research of the National Bureau of Standards, 49(6), pp. 409--436, 1952.
"""
function cg(A, b :: AbstractVector{T};
M=opEye(), atol :: T=eps(T), rtol :: T=eps(T),
itmax :: Int=0, radius :: T=zero(T), linesearch :: Bool=false,
verbose :: Int=0, history :: Bool=false) where T <: AbstractFloat
function cg(A, b :: AbstractVector{T}; kwargs...) where T <: AbstractFloat
solver = CgSolver(A, b)
cg!(solver, A, b; kwargs...)
end

function cg!(solver :: CgSolver{T,S}, A, b :: AbstractVector{T};
M=opEye(), atol :: T=eps(T), rtol :: T=eps(T),
itmax :: Int=0, radius :: T=zero(T), linesearch :: Bool=false,
verbose :: Int=0, history :: Bool=false) where {T <: AbstractFloat, S <: DenseVector{T}}

linesearch && (radius > 0) && error("`linesearch` set to `true` but trust-region radius > 0")

Expand All @@ -50,16 +55,16 @@ function cg(A, b :: AbstractVector{T};

# Check type consistency
eltype(A) == T || error("eltype(A) ≠ $T")
ktypeof(b) == S || error("ktypeof(b) ≠ $S")
isa(M, opEye) || (eltype(M) == T) || error("eltype(M) ≠ $T")

# Determine the storage type of b
S = typeof(b)
# Set up workspace.
x, r, p = solver.x, solver.r, solver.p

# Initial state.
x = kzeros(S, n)
r = copy(b)
x .= zero(T)
r .= b
z = M * r
p = copy(z)
p .= z
γ = @kdot(n, r, z)
γ == 0 && return x, SimpleStats(true, false, [zero(T)], T[], "x = 0 is a zero-residual solution")

Expand Down
Loading

0 comments on commit d8c8a5e

Please sign in to comment.