Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Version 0.1.1 #132

Merged
merged 7 commits into from
Dec 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "SkewLinearAlgebra"
uuid = "5c889d49-8c60-4500-9d10-5d3a22e2f4b9"
authors = ["smataigne <[email protected]> and contributors"]
version = "0.1.0"
version = "0.1.1"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -13,6 +13,7 @@ LinearAlgebra = "1.6"
[extras]
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[targets]
test = ["Test","Random"]
test = ["Test","Random", "SparseArrays"]
151 changes: 115 additions & 36 deletions src/skeweigen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -67,23 +67,21 @@
end

function getshift(ev::AbstractVector{T}) where T
if abs(ev[2]) ≈ abs(ev[1])
return 0
end
return ev[2]^2
end

@views function implicitstep_novec(ev::AbstractVector{T} , n::Integer ) where T
@views function implicitstep_novec(ev::AbstractVector{T} , n::Integer, start::Integer) where T
bulge = zero(T)
shift = getshift(ev[n-1:n])
activation = 0
@inbounds(for i = 1:n-1
α = (i > 1 ? ev[i-1] : zero(ev[i]))
tol = T(1) * eps(T)
@inbounds(for i = start:n-1
α = (i > start ? ev[i-1] : zero(ev[i]))
β = ev[i]
γ = ev[i+1]
x1 = - α * α - β * β + shift
x2 = - α * bulge + β * γ
c, s = ((iszero(x1) && iszero(x2)) ? getgivens(α, bulge) : getgivens(x1, x2))
c, s = (i > start ? getgivens(α, bulge) : getgivens(x1, x2))

if i > 1
ev[i-1] = c * α + s * bulge
end
Expand All @@ -95,17 +93,13 @@
ζ = ev[i+2]
ev[i+2] *= c
bulge = s * ζ
end
#Make it compulsory to initiate a bulge before stopping
if !iszero(bulge)
activation += 1
else
if activation > 0
return
if abs(bulge) < tol && abs(ev[i]) < tol
start = i + 1
return start
end
end
end)
return
return start
end

@views function skewtrieigvals!(A::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
Expand All @@ -120,9 +114,10 @@
tol = eps(T) * T(10)
max_iter = 30 * n
iter = 0 ;
N = n
mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
implicitstep_novec(ev, n - 1)
start = implicitstep_novec(ev, n - 1, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
Expand All @@ -131,6 +126,20 @@
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end
if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
values[1:n] .= complex.(0, skewtrieigvals_backup!(SkewHermTridiagonal(ev[1:n-1])))
return values
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end
if n == 2
Expand All @@ -146,18 +155,18 @@
end
end

@views function implicitstep_vec!(ev::AbstractVector{T}, Qeven::AbstractMatrix{T}, Qodd::AbstractMatrix{T}, n::Integer, N::Integer) where T
@views function implicitstep_vec!(ev::AbstractVector{T}, Qeven::AbstractMatrix{T}, Qodd::AbstractMatrix{T}, n::Integer, N::Integer, start::Integer) where T
bulge = zero(T)
shift = getshift(ev[n-1:n])
activation = 0
@inbounds(for i=1:n-1
α = (i > 1 ? ev[i-1] : zero(ev[i]))
tol = 10 * eps(T)
@inbounds(for i = start:n-1
α = (i > start ? ev[i-1] : zero(ev[i]))
β = ev[i]
γ = ev[i+1]

x1 = - α * α - β * β + shift
x2 = - α * bulge + β * γ
c, s = ((iszero(x1) && iszero(x2)) ? getgivens(α,bulge) : getgivens(x1, x2))
c, s = (i > start ? getgivens(α,bulge) : getgivens(x1, x2))
if i > 1
ev[i-1] = c * α + s * bulge
end
Expand All @@ -167,6 +176,9 @@
ζ = ev[i+2]
ev[i+2] *= c
bulge = s * ζ
if abs(bulge) < tol && abs(ev[i]) < tol
start = i + 1
end
end
Q = (isodd(i) ? Qodd : Qeven)
k = div(i+1, 2)
Expand All @@ -176,19 +188,12 @@
Q[j, k] = c*σ + s*ω
Q[j, k+1] = -s*σ + c*ω
end

if !iszero(bulge)
activation += 1
else
if activation > 0
return
end
end
end)
return
return start
end

@views function skewtrieigen_merged!(A::SkewHermTridiagonal{T}) where {T<:Real}
Backup = copy(A)
n = size(A, 1)
values = complex(zeros(T, n))
vectors = similar(A, Complex{T}, n, n)
Expand All @@ -202,13 +207,14 @@
reducetozero(ev, Ginit, n)
end

tol = eps(T)*T(10)
tol = eps(T) * T(10)
max_iter = 30 * n
iter = 0 ;
halfN = div(n, 2)

mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN)
start = implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
Expand All @@ -217,8 +223,24 @@
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end

if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
values, Q = skewtrieigen_backup!(Backup)
return Eigen(values, Q)
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end

if n > 0
if n == 2
eigofblock(ev[1], values[1:2])
Expand Down Expand Up @@ -298,6 +320,7 @@
end

@views function skewtrieigen_divided!(A::SkewHermTridiagonal{T}) where {T<:Real}
Backup = copy(A)
n = size(A, 1)
values = complex(zeros(T, n))
vectorsreal = similar(A, n, n)
Expand All @@ -317,8 +340,10 @@
max_iter = 30 * n
iter = 0 ;
halfN = div(n, 2)
mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN)
start = implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
Expand All @@ -327,6 +352,27 @@
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if n > 2 && abs(ev[n-1]-mem) < tol
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end
if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
Q = complex.(vectorsreal, vectorsim)
values, Q = skewtrieigen_backup!(Backup)
vectorsreal .= real.(Q)
vectorsim .= imag.(Q)
return values, vectorsreal, vectorsim
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end
if n > 0
Expand Down Expand Up @@ -408,4 +454,37 @@
error("Maximum number of iterations reached, the algorithm didn't converge")
end

end

#The Wilkinson shifts have some pathological cases.
#In these cases, the skew-symmetric eigenvalue problem is solved as detailed in
#C. Penke, A. Marek, C. Vorwerk, C. Draxl, P. Benner, High Performance Solution of Skew-symmetric Eigenvalue Problems with Applications in Solving the Bethe-Salpeter Eigenvalue Problem, Parallel Computing, Volume 96, 2020.

@views function skewtrieigvals_backup!(S::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(S,1)
H = SymTridiagonal(zeros(eltype(S.ev), n), copy(S.ev))
vals = eigvals!(H)
return vals .= .-vals
end

@views function skewtrieigen_backup!(S::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}

n = size(S, 1)
H = SymTridiagonal(zeros(T, n), S.ev)
trisol = eigen!(H)
vals = complex.(0, -trisol.values)
Qdiag = complex(zeros(T,n,n))
c = 1
@inbounds for j=1:n
c = 1
@simd for i=1:2:n-1
Qdiag[i,j] = trisol.vectors[i,j] * c
Qdiag[i+1,j] = complex(0, trisol.vectors[i+1,j] * c)
c *= (-1)
end

Check warning on line 484 in src/skeweigen.jl

View check run for this annotation

Codecov / codecov/patch

src/skeweigen.jl#L484

Added line #L484 was not covered by tests
end
if n % 2 == 1
Qdiag[n,:] = trisol.vectors[n,:] * c

Check warning on line 487 in src/skeweigen.jl

View check run for this annotation

Codecov / codecov/patch

src/skeweigen.jl#L487

Added line #L487 was not covered by tests
end
return vals, Qdiag
end
23 changes: 22 additions & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
using LinearAlgebra, Random
using LinearAlgebra, Random, SparseArrays
using SkewLinearAlgebra
using Test

Expand Down Expand Up @@ -480,3 +480,24 @@ end
end

end

@testset "issue#118 and issue#130" begin
#issue #130
sp = sparse([2, 7, 1, 3, 6, 8, 2, 4, 7, 9, 3, 5, 8, 10, 4, 9, 2, 7, 1, 3, 6, 8, 2, 4, 7, 9, 3, 5, 8, 10, 4, 9], [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10], [-0.8414709848, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, 0.4596976941, -0.4596976941, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.8414709848], 10, 10)
A = SkewHermitian(Matrix(sp))
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
sp = sparse([26, 50, 51, 52, 27, 51, 52, 53, 28, 52, 53, 54, 29, 53, 54, 55, 30, 54, 55, 56, 31, 55, 56, 32, 33, 57, 58, 32, 33, 34, 57, 58, 59, 33, 34, 35, 58, 59, 60, 34, 35, 36, 59, 60, 61, 35, 36, 37, 60, 61, 62, 36, 37, 38, 61, 62, 63, 37, 38, 39, 62, 63, 64, 38, 39, 40, 63, 64, 65, 39, 40, 41, 64, 65, 66, 40, 41, 42, 65, 66, 41, 42, 43, 66, 42, 43, 44, 43, 44, 45, 44, 45, 46, 45, 46, 47, 46, 47, 48, 47, 48, 49, 48, 49, 50, 49, 50, 51, 1, 50, 51, 52, 2, 51, 52, 53, 3, 52, 53, 54, 4, 53, 54, 55, 5, 54, 55, 56, 6, 55, 56, 7, 8, 7, 8, 9, 58, 8, 9, 10, 59, 9, 10, 11, 60, 10, 11, 12, 61, 11, 12, 13, 62, 12, 13, 14, 63, 13, 14, 15, 64, 14, 15, 16, 65, 15, 16, 17, 66, 16, 17, 18, 17, 18, 19, 18, 19, 20, 19, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23, 24, 23, 24, 25, 1, 24, 25, 26, 1, 2, 25, 26, 27, 1, 2, 3, 26, 27, 28, 2, 3, 4, 27, 28, 29, 3, 4, 5, 28, 29, 30, 4, 5, 6, 29, 30, 31, 5, 6, 30, 31, 7, 8, 7, 8, 9, 33, 8, 9, 10, 34, 9, 10, 11, 35, 10, 11, 12, 36, 11, 12, 13, 37, 12, 13, 14, 38, 13, 14, 15, 39, 14, 15, 16, 40, 15, 16, 17, 41], [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 66], [-1.176e-13, -0.0980580675690928, 0.987744983947536, -0.0980580675690911, -4.9e-14, -0.0980580675690911, 0.987744983947536, -0.0980580675690927, 1.96e-14, -0.0980580675690927, 0.987744983947536, -0.098058067569091, -1.96e-13, -0.098058067569091, 0.987744983947536, -0.0980580675690928, -1.274e-13, -0.0980580675690928, 0.987744983947536, -0.0980580675690928, -5.88e-14, -0.0980580675690928, 0.987744983947536, -10.0, -0.4902903378454601, -100.97143868952186, -0.098058067569092, 0.4902903378454601, -10.0, -0.4902903378454601, -0.098058067569092, -100.97143868952186, -0.098058067569092, 0.4902903378454601, -10.0, -0.4902903378454601, -0.098058067569092, -100.97143868952186, -0.0980580675690921, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690921, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.49029033784546, -0.0980580675690919, -100.97143868952186, -0.0980580675690923, 0.49029033784546, -10.0, -0.4902903378454601, -0.0980580675690923, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454603, 0.4902903378454603, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454602, 0.4902903378454603, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454603, 0.4902903378454603, -10.0, -0.4902903378454599, 1.176e-13, 0.4902903378454599, -10.0, -0.4902903378454602, 4.9e-14, 0.4902903378454602, -10.0, -0.4902903378454599, -1.96e-14, 0.4902903378454599, -10.0, -0.4902903378454603, 1.96e-13, 0.4902903378454603, -10.0, -0.4902903378454599, 1.274e-13, 0.4902903378454599, -10.0, -0.4902903378454599, 5.88e-14, 0.4902903378454599, -10.0, 10.0, -0.4902903378454601, 0.4902903378454601, 10.0, -0.4902903378454601, 2.4e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 4.9e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 7.3e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 9.8e-15, 0.4902903378454601, 10.0, -0.49029033784546, 1.22e-14, 0.49029033784546, 10.0, -0.4902903378454601, 1.47e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 1.71e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 1.96e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 2.2e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 0.4902903378454601, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.4902903378454603, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.4902903378454602, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.0980580675690928, 0.4902903378454603, 10.0, -0.4902903378454599, -0.987744983947536, 0.0980580675690911, 0.4902903378454599, 10.0, -0.4902903378454602, 0.0980580675690911, -0.987744983947536, 0.0980580675690927, 0.4902903378454602, 10.0, -0.4902903378454599, 0.0980580675690927, -0.987744983947536, 0.098058067569091, 0.4902903378454599, 10.0, -0.4902903378454603, 0.098058067569091, -0.987744983947536, 0.0980580675690928, 0.4902903378454603, 10.0, -0.4902903378454599, 0.0980580675690928, -0.987744983947536, 0.0980580675690928, 0.4902903378454599, 10.0, -0.4902903378454599, 0.0980580675690928, -0.987744983947536, 0.4902903378454599, 10.0, 100.97143868952186, 0.098058067569092, 0.098058067569092, 100.97143868952186, 0.098058067569092, -2.4e-15, 0.098058067569092, 100.97143868952186, 0.0980580675690921, -4.9e-15, 0.0980580675690921, 100.97143868952186, 0.0980580675690919, -7.3e-15, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -9.8e-15, 0.0980580675690919, 100.97143868952186, 0.0980580675690923, -1.22e-14, 0.0980580675690923, 100.97143868952186, 0.0980580675690919, -1.47e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -1.71e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -1.96e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -2.2e-14], 66, 66)
A = SkewHermitian(Matrix(sp))
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
#issue #118
for v ∈ ([1.0, 0.001, 1.0, 0.0001, 1.0], [2.0, 1e-11, 2.0, 1e-11, 2.0])
A = SkewHermTridiagonal(v)
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
B = SkewHermitian(Matrix(A))
E = eigen(B)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ B
end
end
Loading