Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge code that handles Adjoint and Transpose #49521

Merged
merged 2 commits into from
May 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions stdlib/LinearAlgebra/src/adjtrans.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,41 @@ end
Adjoint(A) = Adjoint{Base.promote_op(adjoint,eltype(A)),typeof(A)}(A)
Transpose(A) = Transpose{Base.promote_op(transpose,eltype(A)),typeof(A)}(A)

"""
adj_or_trans(::AbstractArray) -> adjoint|transpose|identity
adj_or_trans(::Type{<:AbstractArray}) -> adjoint|transpose|identity

Return [`adjoint`](@ref) from an `Adjoint` type or object and
[`transpose`](@ref) from a `Transpose` type or object. Otherwise,
return [`identity`](@ref). Note that `Adjoint` and `Transpose` have
to be the outer-most wrapper object for a non-`identity` function to be
returned.
"""
adj_or_trans(::T) where {T<:AbstractArray} = adj_or_trans(T)
adj_or_trans(::Type{<:AbstractArray}) = identity
adj_or_trans(::Type{<:Adjoint}) = adjoint
adj_or_trans(::Type{<:Transpose}) = transpose

"""
inplace_adj_or_trans(::AbstractArray) -> adjoint!|transpose!|copyto!
inplace_adj_or_trans(::Type{<:AbstractArray}) -> adjoint!|transpose!|copyto!

Return [`adjoint!`](@ref) from an `Adjoint` type or object and
[`transpose!`](@ref) from a `Transpose` type or object. Otherwise,
return [`copyto!`](@ref). Note that `Adjoint` and `Transpose` have
to be the outer-most wrapper object for a non-`identity` function to be
returned.
"""
inplace_adj_or_trans(::T) where {T <: AbstractArray} = inplace_adj_or_trans(T)
inplace_adj_or_trans(::Type{<:AbstractArray}) = copyto!
inplace_adj_or_trans(::Type{<:Adjoint}) = adjoint!
inplace_adj_or_trans(::Type{<:Transpose}) = transpose!

adj_or_trans_char(::T) where {T<:AbstractArray} = adj_or_trans_char(T)
adj_or_trans_char(::Type{<:AbstractArray}) = 'N'
adj_or_trans_char(::Type{<:Adjoint}) = 'C'
adj_or_trans_char(::Type{<:Transpose}) = 'T'

Base.dataids(A::Union{Adjoint, Transpose}) = Base.dataids(A.parent)
Base.unaliascopy(A::Union{Adjoint,Transpose}) = typeof(A)(Base.unaliascopy(A.parent))

Expand Down
21 changes: 7 additions & 14 deletions stdlib/LinearAlgebra/src/bidiag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -743,17 +743,13 @@ function ldiv!(c::AbstractVecOrMat, A::Bidiagonal, b::AbstractVecOrMat)
end
return c
end
ldiv!(A::Transpose{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) = @inline ldiv!(b, A, b)
ldiv!(A::Adjoint{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) = @inline ldiv!(b, A, b)
ldiv!(c::AbstractVecOrMat, A::Transpose{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) =
(_rdiv!(transpose(c), transpose(b), transpose(A)); return c)
ldiv!(c::AbstractVecOrMat, A::Adjoint{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) =
(_rdiv!(adjoint(c), adjoint(b), adjoint(A)); return c)
ldiv!(A::AdjOrTrans{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) = @inline ldiv!(b, A, b)
ldiv!(c::AbstractVecOrMat, A::AdjOrTrans{<:Any,<:Bidiagonal}, b::AbstractVecOrMat) =
(t = adj_or_trans(A); _rdiv!(t(c), t(b), t(A)); return c)

### Generic promotion methods and fallbacks
\(A::Bidiagonal, B::AbstractVecOrMat) = ldiv!(_initarray(\, eltype(A), eltype(B), B), A, B)
\(tA::Transpose{<:Any,<:Bidiagonal}, B::AbstractVecOrMat) = copy(tA) \ B
\(adjA::Adjoint{<:Any,<:Bidiagonal}, B::AbstractVecOrMat) = copy(adjA) \ B
\(xA::AdjOrTrans{<:Any,<:Bidiagonal}, B::AbstractVecOrMat) = copy(xA) \ B

### Triangular specializations
function \(B::Bidiagonal, U::UpperTriangular)
Expand Down Expand Up @@ -837,12 +833,9 @@ function _rdiv!(C::AbstractMatrix, A::AbstractMatrix, B::Bidiagonal)
C
end
rdiv!(A::AbstractMatrix, B::Bidiagonal) = @inline _rdiv!(A, A, B)
rdiv!(A::AbstractMatrix, B::Adjoint{<:Any,<:Bidiagonal}) = @inline _rdiv!(A, A, B)
rdiv!(A::AbstractMatrix, B::Transpose{<:Any,<:Bidiagonal}) = @inline _rdiv!(A, A, B)
_rdiv!(C::AbstractMatrix, A::AbstractMatrix, B::Adjoint{<:Any,<:Bidiagonal}) =
(ldiv!(adjoint(C), adjoint(B), adjoint(A)); return C)
_rdiv!(C::AbstractMatrix, A::AbstractMatrix, B::Transpose{<:Any,<:Bidiagonal}) =
(ldiv!(transpose(C), transpose(B), transpose(A)); return C)
rdiv!(A::AbstractMatrix, B::AdjOrTrans{<:Any,<:Bidiagonal}) = @inline _rdiv!(A, A, B)
_rdiv!(C::AbstractMatrix, A::AbstractMatrix, B::AdjOrTrans{<:Any,<:Bidiagonal}) =
(t = adj_or_trans(B); ldiv!(t(C), t(B), t(A)); return C)

/(A::AbstractMatrix, B::Bidiagonal) = _rdiv!(_initarray(/, eltype(A), eltype(B), A), A, B)

Expand Down
8 changes: 2 additions & 6 deletions stdlib/LinearAlgebra/src/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -396,16 +396,12 @@ end
_muldiag!(out, D, V, alpha, beta)
@inline mul!(out::AbstractMatrix, D::Diagonal, B::AbstractMatrix, alpha::Number, beta::Number) =
_muldiag!(out, D, B, alpha, beta)
@inline mul!(out::AbstractMatrix, D::Diagonal, B::Adjoint{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) = _muldiag!(out, D, B, alpha, beta)
@inline mul!(out::AbstractMatrix, D::Diagonal, B::Transpose{<:Any,<:AbstractVecOrMat},
@inline mul!(out::AbstractMatrix, D::Diagonal, B::AdjOrTrans{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) = _muldiag!(out, D, B, alpha, beta)

@inline mul!(out::AbstractMatrix, A::AbstractMatrix, D::Diagonal, alpha::Number, beta::Number) =
_muldiag!(out, A, D, alpha, beta)
@inline mul!(out::AbstractMatrix, A::Adjoint{<:Any,<:AbstractVecOrMat}, D::Diagonal,
alpha::Number, beta::Number) = _muldiag!(out, A, D, alpha, beta)
@inline mul!(out::AbstractMatrix, A::Transpose{<:Any,<:AbstractVecOrMat}, D::Diagonal,
@inline mul!(out::AbstractMatrix, A::AdjOrTrans{<:Any,<:AbstractVecOrMat}, D::Diagonal,
alpha::Number, beta::Number) = _muldiag!(out, A, D, alpha, beta)
@inline mul!(C::Diagonal, Da::Diagonal, Db::Diagonal, alpha::Number, beta::Number) =
_muldiag!(C, Da, Db, alpha, beta)
Expand Down
171 changes: 54 additions & 117 deletions stdlib/LinearAlgebra/src/matmul.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,16 @@
# This file is a part of Julia. License is MIT: https://julialang.org/license

# matmul.jl: Everything to do with dense matrix multiplication

# Matrix-matrix multiplication

AdjOrTransStridedMat{T} = Union{Adjoint{T, <:StridedMatrix}, Transpose{T, <:StridedMatrix}}
StridedMaybeAdjOrTransMat{T} = Union{StridedMatrix{T}, Adjoint{T, <:StridedMatrix}, Transpose{T, <:StridedMatrix}}
AdjOrTransStridedMat{T} = Union{Adjoint{<:Any, <:StridedMatrix{T}}, Transpose{<:Any, <:StridedMatrix{T}}}
StridedMaybeAdjOrTransMat{T} = Union{StridedMatrix{T}, Adjoint{<:Any, <:StridedMatrix{T}}, Transpose{<:Any, <:StridedMatrix{T}}}
StridedMaybeAdjOrTransVecOrMat{T} = Union{StridedVecOrMat{T}, AdjOrTrans{<:Any, <:StridedVecOrMat{T}}}

# matmul.jl: Everything to do with dense matrix multiplication
_parent(A) = A
_parent(A::Adjoint) = parent(A)
_parent(A::Transpose) = parent(A)

matprod(x, y) = x*y + x*y

Expand Down Expand Up @@ -46,83 +51,48 @@ function *(transx::Transpose{<:Any,<:StridedVector{T}}, y::StridedVector{T}) whe
end

# Matrix-vector multiplication
function (*)(A::StridedMatrix{T}, x::StridedVector{S}) where {T<:BlasFloat,S<:Real}
function (*)(A::StridedMaybeAdjOrTransMat{T}, x::StridedVector{S}) where {T<:BlasFloat,S<:Real}
TS = promote_op(matprod, T, S)
y = isconcretetype(TS) ? convert(AbstractVector{TS}, x) : x
mul!(similar(x, TS, size(A,1)), A, y)
end
function (*)(A::AbstractMatrix{T}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
mul!(similar(x,TS,axes(A,1)),A,x)
mul!(similar(x, TS, axes(A,1)), A, x)
end

# these will throw a DimensionMismatch unless B has 1 row (or 1 col for transposed case):
(*)(a::AbstractVector, tB::TransposeAbsMat) = reshape(a, length(a), 1) * tB
(*)(a::AbstractVector, adjB::AdjointAbsMat) = reshape(a, length(a), 1) * adjB
(*)(a::AbstractVector, B::AbstractMatrix) = reshape(a, length(a), 1) * B

@inline mul!(y::StridedVector{T}, A::StridedVecOrMat{T}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemv!(y, 'N', A, x, alpha, beta)

@inline mul!(y::AbstractVector, A::AbstractVecOrMat, x::AbstractVector,
alpha::Number, beta::Number) =
generic_matvecmul!(y, adj_or_trans_char(A), _parent(A), x, MulAddMul(alpha, beta))
# BLAS cases
@inline mul!(y::StridedVector{T}, A::StridedMaybeAdjOrTransVecOrMat{T}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemv!(y, adj_or_trans_char(A), _parent(A), x, alpha, beta)
# catch the real adjoint case and rewrap to transpose
@inline mul!(y::StridedVector{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasReal} =
mul!(y, transpose(adjA.parent), x, alpha, beta)
# Complex matrix times real vector.
# Reinterpret the matrix as a real matrix and do real matvec computation.
@inline mul!(y::StridedVector{Complex{T}}, A::StridedVecOrMat{Complex{T}}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasReal} =
gemv!(y, 'N', A, x, alpha, beta)

# Real matrix times complex vector.
# Multiply the matrix with the real and imaginary parts separately
@inline mul!(y::StridedVector{Complex{T}}, A::StridedMaybeAdjOrTransMat{T}, x::StridedVector{Complex{T}},
alpha::Number, beta::Number) where {T<:BlasReal} =
gemv!(y, A isa StridedArray ? 'N' : 'T', A isa StridedArray ? A : parent(A), x, alpha, beta)

@inline mul!(y::AbstractVector, A::AbstractVecOrMat, x::AbstractVector,
alpha::Number, beta::Number) =
generic_matvecmul!(y, 'N', A, x, MulAddMul(alpha, beta))

function *(tA::Transpose{<:Any,<:StridedMatrix{T}}, x::StridedVector{S}) where {T<:BlasFloat,S}
TS = promote_op(matprod, T, S)
mul!(similar(x, TS, size(tA, 1)), tA, convert(AbstractVector{TS}, x))
end
function *(tA::Transpose{<:Any,<:AbstractMatrix{T}}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
mul!(similar(x, TS, size(tA, 1)), tA, x)
end
@inline mul!(y::StridedVector{T}, tA::Transpose{<:Any,<:StridedVecOrMat{T}}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemv!(y, 'T', tA.parent, x, alpha, beta)
@inline mul!(y::AbstractVector, tA::Transpose{<:Any,<:AbstractVecOrMat}, x::AbstractVector,
alpha::Number, beta::Number) =
generic_matvecmul!(y, 'T', tA.parent, x, MulAddMul(alpha, beta))

function *(adjA::Adjoint{<:Any,<:StridedMatrix{T}}, x::StridedVector{S}) where {T<:BlasFloat,S}
TS = promote_op(matprod, T, S)
mul!(similar(x, TS, size(adjA, 1)), adjA, convert(AbstractVector{TS}, x))
end
function *(adjA::Adjoint{<:Any,<:AbstractMatrix{T}}, x::AbstractVector{S}) where {T,S}
TS = promote_op(matprod, T, S)
mul!(similar(x, TS, size(adjA, 1)), adjA, x)
end

@inline mul!(y::StridedVector{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasReal} =
mul!(y, transpose(adjA.parent), x, alpha, beta)
@inline mul!(y::StridedVector{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, x::StridedVector{T},
alpha::Number, beta::Number) where {T<:BlasComplex} =
gemv!(y, 'C', adjA.parent, x, alpha, beta)
@inline mul!(y::AbstractVector, adjA::Adjoint{<:Any,<:AbstractVecOrMat}, x::AbstractVector,
alpha::Number, beta::Number) =
generic_matvecmul!(y, 'C', adjA.parent, x, MulAddMul(alpha, beta))
gemv!(y, A isa StridedArray ? 'N' : 'T', _parent(A), x, alpha, beta)

# Vector-Matrix multiplication
(*)(x::AdjointAbsVec, A::AbstractMatrix) = (A'*x')'
(*)(x::TransposeAbsVec, A::AbstractMatrix) = transpose(transpose(A)*transpose(x))

_parent(A) = A
_parent(A::Adjoint) = parent(A)
_parent(A::Transpose) = parent(A)

# Matrix-matrix multiplication
"""
*(A::AbstractMatrix, B::AbstractMatrix)

Expand Down Expand Up @@ -156,10 +126,6 @@ function (*)(A::StridedMaybeAdjOrTransMat{<:BlasComplex}, B::StridedMaybeAdjOrTr
wrapperop(B)(convert(AbstractArray{TS}, _parent(B))))
end

@inline function mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, B::StridedVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasFloat}
return gemm_wrapper!(C, 'N', 'N', A, B, MulAddMul(alpha, beta))
end
# Complex Matrix times real matrix: We use that it is generally faster to reinterpret the
# first matrix as a real matrix and carry out real matrix matrix multiply
function (*)(A::StridedMatrix{<:BlasComplex}, B::StridedMaybeAdjOrTransMat{<:BlasReal})
Expand Down Expand Up @@ -301,7 +267,14 @@ julia> C
"""
@inline mul!(C::AbstractMatrix, A::AbstractVecOrMat, B::AbstractVecOrMat,
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'N', 'N', A, B, MulAddMul(alpha, beta))
generic_matmatmul!(
C,
adj_or_trans_char(A),
adj_or_trans_char(B),
_parent(A),
_parent(B),
MulAddMul(alpha, beta)
)

"""
rmul!(A, B)
Expand Down Expand Up @@ -369,6 +342,12 @@ julia> lmul!(F.Q, B)
"""
lmul!(A, B)

# generic case
@inline mul!(C::StridedMatrix{T}, A::StridedMaybeAdjOrTransVecOrMat{T}, B::StridedMaybeAdjOrTransVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemm_wrapper!(C, adj_or_trans_char(A), adj_or_trans_char(B), _parent(A), _parent(B), MulAddMul(alpha, beta))

# AtB & ABt (including B === A)
@inline function mul!(C::StridedMatrix{T}, tA::Transpose{<:Any,<:StridedVecOrMat{T}}, B::StridedVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasFloat}
A = tA.parent
Expand All @@ -378,10 +357,6 @@ lmul!(A, B)
return gemm_wrapper!(C, 'T', 'N', A, B, MulAddMul(alpha, beta))
end
end
@inline mul!(C::AbstractMatrix, tA::Transpose{<:Any,<:AbstractVecOrMat}, B::AbstractVecOrMat,
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'T', 'N', tA.parent, B, MulAddMul(alpha, beta))

@inline function mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, tB::Transpose{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasFloat}
B = tB.parent
Expand All @@ -391,39 +366,15 @@ end
return gemm_wrapper!(C, 'N', 'T', A, B, MulAddMul(alpha, beta))
end
end
# Complex matrix times (transposed) real matrix. Reinterpret the first matrix to real for efficiency.
@inline mul!(C::StridedMatrix{Complex{T}}, A::StridedVecOrMat{Complex{T}}, B::StridedVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasReal} =
gemm_wrapper!(C, 'N', 'N', A, B, MulAddMul(alpha, beta))
@inline mul!(C::StridedMatrix{Complex{T}}, A::StridedVecOrMat{Complex{T}}, tB::Transpose{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasReal} =
gemm_wrapper!(C, 'N', 'T', A, parent(tB), MulAddMul(alpha, beta))

# collapsing the following two defs with C::AbstractVecOrMat yields ambiguities
@inline mul!(C::AbstractVector, A::AbstractVecOrMat, tB::Transpose{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'N', 'T', A, tB.parent, MulAddMul(alpha, beta))
Comment on lines -403 to -405
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The only change in tests is due to the removal of this method, which is at odds with all the rest of the mul! functions due to the vector target. This only works when all vectors have length 1, anyway. And there is no Adjoint analogue.

@inline mul!(C::AbstractMatrix, A::AbstractVecOrMat, tB::Transpose{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'N', 'T', A, tB.parent, MulAddMul(alpha, beta))

@inline mul!(C::StridedMatrix{T}, tA::Transpose{<:Any,<:StridedVecOrMat{T}}, tB::Transpose{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemm_wrapper!(C, 'T', 'T', tA.parent, tB.parent, MulAddMul(alpha, beta))
@inline mul!(C::AbstractMatrix, tA::Transpose{<:Any,<:AbstractVecOrMat}, tB::Transpose{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'T', 'T', tA.parent, tB.parent, MulAddMul(alpha, beta))

@inline mul!(C::StridedMatrix{T}, tA::Transpose{<:Any,<:StridedVecOrMat{T}}, adjB::Adjoint{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemm_wrapper!(C, 'T', 'C', tA.parent, adjB.parent, MulAddMul(alpha, beta))
@inline mul!(C::AbstractMatrix, tA::Transpose{<:Any,<:AbstractVecOrMat}, tB::Adjoint{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'T', 'C', tA.parent, tB.parent, MulAddMul(alpha, beta))

# real adjoint cases, also needed for disambiguation
@inline mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, adjB::Adjoint{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasReal} =
mul!(C, A, transpose(adjB.parent), alpha, beta)
@inline mul!(C::StridedMatrix{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, B::StridedVecOrMat{T},
alpha::Real, beta::Real) where {T<:BlasReal} =
alpha::Real, beta::Real) where {T<:BlasReal} =
mul!(C, transpose(adjA.parent), B, alpha, beta)

# AcB & ABc (including B === A)
@inline function mul!(C::StridedMatrix{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, B::StridedVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasComplex}
A = adjA.parent
Expand All @@ -433,13 +384,6 @@ end
return gemm_wrapper!(C, 'C', 'N', A, B, MulAddMul(alpha, beta))
end
end
@inline mul!(C::AbstractMatrix, adjA::Adjoint{<:Any,<:AbstractVecOrMat}, B::AbstractVecOrMat,
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'C', 'N', adjA.parent, B, MulAddMul(alpha, beta))

@inline mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, adjB::Adjoint{<:Any,<:StridedVecOrMat{<:BlasReal}},
alpha::Number, beta::Number) where {T<:BlasFloat} =
mul!(C, A, transpose(adjB.parent), alpha, beta)
@inline function mul!(C::StridedMatrix{T}, A::StridedVecOrMat{T}, adjB::Adjoint{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasComplex}
B = adjB.parent
Expand All @@ -449,23 +393,16 @@ end
return gemm_wrapper!(C, 'N', 'C', A, B, MulAddMul(alpha, beta))
end
end
@inline mul!(C::AbstractMatrix, A::AbstractVecOrMat, adjB::Adjoint{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'N', 'C', A, adjB.parent, MulAddMul(alpha, beta))

@inline mul!(C::StridedMatrix{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, adjB::Adjoint{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemm_wrapper!(C, 'C', 'C', adjA.parent, adjB.parent, MulAddMul(alpha, beta))
@inline mul!(C::AbstractMatrix, adjA::Adjoint{<:Any,<:AbstractVecOrMat}, adjB::Adjoint{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'C', 'C', adjA.parent, adjB.parent, MulAddMul(alpha, beta))

@inline mul!(C::StridedMatrix{T}, adjA::Adjoint{<:Any,<:StridedVecOrMat{T}}, tB::Transpose{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasFloat} =
gemm_wrapper!(C, 'C', 'T', adjA.parent, tB.parent, MulAddMul(alpha, beta))
@inline mul!(C::AbstractMatrix, adjA::Adjoint{<:Any,<:AbstractVecOrMat}, tB::Transpose{<:Any,<:AbstractVecOrMat},
alpha::Number, beta::Number) =
generic_matmatmul!(C, 'C', 'T', adjA.parent, tB.parent, MulAddMul(alpha, beta))

# Complex matrix times (transposed) real matrix. Reinterpret the first matrix to real for efficiency.
@inline mul!(C::StridedMatrix{Complex{T}}, A::StridedMaybeAdjOrTransVecOrMat{Complex{T}}, B::StridedMaybeAdjOrTransVecOrMat{T},
alpha::Number, beta::Number) where {T<:BlasReal} =
gemm_wrapper!(C, adj_or_trans_char(A), adj_or_trans_char(B), _parent(A), _parent(B), MulAddMul(alpha, beta))
# catch the real adjoint case and interpret it as a transpose
@inline mul!(C::StridedMatrix{Complex{T}}, A::StridedVecOrMat{Complex{T}}, adjB::Adjoint{<:Any,<:StridedVecOrMat{T}},
alpha::Number, beta::Number) where {T<:BlasReal} =
mul!(C, A, transpose(adjB.parent), alpha, beta)


# Supporting functions for matrix multiplication

Expand Down
Loading