Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

make Irrational <: AbstractIrrational #24245

Merged
merged 1 commit into from
Oct 26, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,8 @@ This section lists changes that do not have deprecation warnings.
Library improvements
--------------------

* `Irrational` is now a subtype of `AbstractIrrational` ([#24245]).

* The function `chop` now accepts two arguments `head` and `tail` allowing to specify
number of characters to remove from the head and tail of the string ([#24126]).

Expand Down
1 change: 1 addition & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ export

# Types
AbstractChannel,
AbstractIrrational,
AbstractMatrix,
AbstractRange,
AbstractSet,
Expand Down
98 changes: 53 additions & 45 deletions base/irrationals.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,24 +3,32 @@
## general machinery for irrational mathematical constants

"""
Irrational <: Real
AbstractIrrational <: Real

Irrational number type.
Number type representing an exact irrational value.
"""
struct Irrational{sym} <: Real end
abstract type AbstractIrrational <: Real end
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could be added to the "Abstract number types" section of doc/src/stdlib/numbers.md

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Okay, done.


"""
Irrational{sym} <: AbstractIrrational

Number type representing an exact irrational value denoted by the
symbol `sym`.
"""
struct Irrational{sym} <: AbstractIrrational end

show(io::IO, x::Irrational{sym}) where {sym} = print(io, "$sym = $(string(float(x))[1:15])...")

promote_rule(::Type{<:Irrational}, ::Type{Float16}) = Float16
promote_rule(::Type{<:Irrational}, ::Type{Float32}) = Float32
promote_rule(::Type{<:Irrational}, ::Type{<:Irrational}) = Float64
promote_rule(::Type{<:Irrational}, ::Type{T}) where {T<:Number} = promote_type(Float64, T)
promote_rule(::Type{<:AbstractIrrational}, ::Type{Float16}) = Float16
promote_rule(::Type{<:AbstractIrrational}, ::Type{Float32}) = Float32
promote_rule(::Type{<:AbstractIrrational}, ::Type{<:AbstractIrrational}) = Float64
promote_rule(::Type{<:AbstractIrrational}, ::Type{T}) where {T<:Number} = promote_type(Float64, T)

convert(::Type{AbstractFloat}, x::Irrational) = Float64(x)
convert(::Type{Float16}, x::Irrational) = Float16(Float32(x))
convert(::Type{Complex{T}}, x::Irrational) where {T<:Real} = convert(Complex{T}, convert(T,x))
convert(::Type{AbstractFloat}, x::AbstractIrrational) = Float64(x)
convert(::Type{Float16}, x::AbstractIrrational) = Float16(Float32(x))
convert(::Type{Complex{T}}, x::AbstractIrrational) where {T<:Real} = convert(Complex{T}, convert(T,x))

@pure function convert(::Type{Rational{T}}, x::Irrational) where T<:Integer
@pure function convert(::Type{Rational{T}}, x::AbstractIrrational) where T<:Integer
o = precision(BigFloat)
p = 256
while true
Expand All @@ -34,50 +42,50 @@ convert(::Type{Complex{T}}, x::Irrational) where {T<:Real} = convert(Complex{T},
p += 32
end
end
convert(::Type{Rational{BigInt}}, x::Irrational) = throw(ArgumentError("Cannot convert an Irrational to a Rational{BigInt}: use rationalize(Rational{BigInt}, x) instead"))
convert(::Type{Rational{BigInt}}, x::AbstractIrrational) = throw(ArgumentError("Cannot convert an AbstractIrrational to a Rational{BigInt}: use rationalize(Rational{BigInt}, x) instead"))

@pure function (t::Type{T})(x::Irrational, r::RoundingMode) where T<:Union{Float32,Float64}
@pure function (t::Type{T})(x::AbstractIrrational, r::RoundingMode) where T<:Union{Float32,Float64}
setprecision(BigFloat, 256) do
T(BigFloat(x), r)
end
end

float(::Type{<:Irrational}) = Float64
float(::Type{<:AbstractIrrational}) = Float64

==(::Irrational{s}, ::Irrational{s}) where {s} = true
==(::Irrational, ::Irrational) = false
==(::AbstractIrrational, ::AbstractIrrational) = false

# Irrationals, by definition, can't have a finite representation equal them exactly
==(x::Irrational, y::Real) = false
==(x::Real, y::Irrational) = false
==(x::AbstractIrrational, y::Real) = false
==(x::Real, y::AbstractIrrational) = false

# Irrational vs AbstractFloat
<(x::Irrational, y::Float64) = Float64(x,RoundUp) <= y
<(x::Float64, y::Irrational) = x <= Float64(y,RoundDown)
<(x::Irrational, y::Float32) = Float32(x,RoundUp) <= y
<(x::Float32, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::Float16) = Float32(x,RoundUp) <= y
<(x::Float16, y::Irrational) = x <= Float32(y,RoundDown)
<(x::Irrational, y::BigFloat) = setprecision(precision(y)+32) do
<(x::AbstractIrrational, y::Float64) = Float64(x,RoundUp) <= y
<(x::Float64, y::AbstractIrrational) = x <= Float64(y,RoundDown)
<(x::AbstractIrrational, y::Float32) = Float32(x,RoundUp) <= y
<(x::Float32, y::AbstractIrrational) = x <= Float32(y,RoundDown)
<(x::AbstractIrrational, y::Float16) = Float32(x,RoundUp) <= y
<(x::Float16, y::AbstractIrrational) = x <= Float32(y,RoundDown)
<(x::AbstractIrrational, y::BigFloat) = setprecision(precision(y)+32) do
big(x) < y
end
<(x::BigFloat, y::Irrational) = setprecision(precision(x)+32) do
<(x::BigFloat, y::AbstractIrrational) = setprecision(precision(x)+32) do
x < big(y)
end

<=(x::Irrational, y::AbstractFloat) = x < y
<=(x::AbstractFloat, y::Irrational) = x < y
<=(x::AbstractIrrational, y::AbstractFloat) = x < y
<=(x::AbstractFloat, y::AbstractIrrational) = x < y

# Irrational vs Rational
@pure function rationalize(::Type{T}, x::Irrational; tol::Real=0) where T
@pure function rationalize(::Type{T}, x::AbstractIrrational; tol::Real=0) where T
return rationalize(T, big(x), tol=tol)
end
@pure function lessrational(rx::Rational{<:Integer}, x::Irrational)
@pure function lessrational(rx::Rational{<:Integer}, x::AbstractIrrational)
# an @pure version of `<` for determining if the rationalization of
# an irrational number required rounding up or down
return rx < big(x)
end
function <(x::Irrational, y::Rational{T}) where T
function <(x::AbstractIrrational, y::Rational{T}) where T
T <: Unsigned && x < 0.0 && return true
rx = rationalize(T, x)
if lessrational(rx, x)
Expand All @@ -86,7 +94,7 @@ function <(x::Irrational, y::Rational{T}) where T
return rx <= y
end
end
function <(x::Rational{T}, y::Irrational) where T
function <(x::Rational{T}, y::AbstractIrrational) where T
T <: Unsigned && y < 0.0 && return false
ry = rationalize(T, y)
if lessrational(ry, y)
Expand All @@ -95,24 +103,24 @@ function <(x::Rational{T}, y::Irrational) where T
return x < ry
end
end
<(x::Irrational, y::Rational{BigInt}) = big(x) < y
<(x::Rational{BigInt}, y::Irrational) = x < big(y)
<(x::AbstractIrrational, y::Rational{BigInt}) = big(x) < y
<(x::Rational{BigInt}, y::AbstractIrrational) = x < big(y)

<=(x::Irrational, y::Rational) = x < y
<=(x::Rational, y::Irrational) = x < y
<=(x::AbstractIrrational, y::Rational) = x < y
<=(x::Rational, y::AbstractIrrational) = x < y

isfinite(::Irrational) = true
isinteger(::Irrational) = false
iszero(::Irrational) = false
isone(::Irrational) = false
isfinite(::AbstractIrrational) = true
isinteger(::AbstractIrrational) = false
iszero(::AbstractIrrational) = false
isone(::AbstractIrrational) = false

hash(x::Irrational, h::UInt) = 3*object_id(x) - h

-(x::Irrational) = -Float64(x)
-(x::AbstractIrrational) = -Float64(x)
for op in Symbol[:+, :-, :*, :/, :^]
@eval $op(x::Irrational, y::Irrational) = $op(Float64(x),Float64(y))
@eval $op(x::AbstractIrrational, y::AbstractIrrational) = $op(Float64(x),Float64(y))
end
*(x::Bool, y::Irrational) = ifelse(x, Float64(y), 0.0)
*(x::Bool, y::AbstractIrrational) = ifelse(x, Float64(y), 0.0)

macro irrational(sym, val, def)
esym = esc(sym)
Expand All @@ -138,11 +146,11 @@ macro irrational(sym, val, def)
end
end

big(x::Irrational) = convert(BigFloat,x)
big(::Type{<:Irrational}) = BigFloat
big(x::AbstractIrrational) = convert(BigFloat,x)
big(::Type{<:AbstractIrrational}) = BigFloat

# align along = for nice Array printing
function alignment(io::IO, x::Irrational)
function alignment(io::IO, x::AbstractIrrational)
m = match(r"^(.*?)(=.*)$", sprint(0, showcompact, x, env=io))
m === nothing ? (length(sprint(0, showcompact, x, env=io)), 0) :
(length(m.captures[1]), length(m.captures[2]))
Expand Down
2 changes: 1 addition & 1 deletion base/mathconstants.jl
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ catalan = 0.9159655941772...
catalan

# loop over types to prevent ambiguities for ^(::Number, x)
for T in (Irrational, Rational, Integer, Number)
for T in (AbstractIrrational, Rational, Integer, Number)
Base.:^(::Irrational{:ℯ}, x::T) = exp(x)
end

Expand Down
1 change: 1 addition & 0 deletions doc/src/stdlib/numbers.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ Core.AbstractFloat
Core.Integer
Core.Signed
Core.Unsigned
Base.AbstractIrrational
```

### Concrete number types
Expand Down