Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
AbstractInterpreter
to parameterize compilation pipeline
This allows selective overriding of the compilation pipeline through multiple dispatch, enabling projects like `XLA.jl` to maintain separate inference caches, inference algorithms or heuristic algorithms while inferring and lowering code. In particular, it defines a new type, `AbstractInterpreter`, that represents an abstract interpretation pipeline. This `AbstractInterpreter` has a single defined concrete subtype, `NativeInterpreter`, that represents the native Julia compilation pipeline. The `NativeInterpreter` contains within it all the compiler parameters previously contained within `Params`, split into two pieces: `InferenceParams` and `OptimizationParams`, used within type inference and optimization, respectively. The interpreter object is then threaded throughout most of the type inference pipeline, and allows for straightforward prototyping and replacement of the compiler internals. As a simple example of the kind of workflow this enables, I include here a simple testing script showing how to use this to easily get a list of the number of times a function is inferred during type inference by overriding just two functions within the compiler. First, I will define here some simple methods to make working with inference a bit easier: ```julia using Core.Compiler import Core.Compiler: InferenceParams, OptimizationParams, get_world_counter, get_inference_cache """ @infer_function interp foo(1, 2) [show_steps=true] [show_ir=false] Infer a function call using the given interpreter object, return the inference object. Set keyword arguments to modify verbosity: * Set `show_steps` to `true` to see the `InferenceResult` step by step. * Set `show_ir` to `true` to see the final type-inferred Julia IR. """ macro infer_function(interp, func_call, kwarg_exs...) if !isa(func_call, Expr) || func_call.head != :call error("@infer_function requires a function call") end local func = func_call.args[1] local args = func_call.args[2:end] kwargs = [] for ex in kwarg_exs if ex isa Expr && ex.head === :(=) && ex.args[1] isa Symbol push!(kwargs, first(ex.args) => last(ex.args)) else error("Invalid @infer_function kwarg $(ex)") end end return quote infer_function($(esc(interp)), $(esc(func)), typeof.(($(args)...,)); $(esc(kwargs))...) end end function infer_function(interp, f, tt; show_steps::Bool=false, show_ir::Bool=false) # Find all methods that are applicable to these types fms = methods(f, tt) if length(fms) != 1 error("Unable to find single applicable method for $f with types $tt") end # Take the first applicable method method = first(fms) # Build argument tuple method_args = Tuple{typeof(f), tt...} # Grab the appropriate method instance for these types mi = Core.Compiler.specialize_method(method, method_args, Core.svec()) # Construct InferenceResult to hold the result, result = Core.Compiler.InferenceResult(mi) if show_steps @info("Initial result, before inference: ", result) end # Create an InferenceState to begin inference, give it a world that is always newest world = Core.Compiler.get_world_counter() frame = Core.Compiler.InferenceState(result, #=cached=# true, interp) # Run type inference on this frame. Because the interpreter is embedded # within this InferenceResult, we don't need to pass the interpreter in. Core.Compiler.typeinf_local(interp, frame) if show_steps @info("Ending result, post-inference: ", result) end if show_ir @info("Inferred source: ", result.result.src) end # Give the result back return result end ``` Next, we define a simple function and pass it through: ```julia function foo(x, y) return x + y * x end native_interpreter = Core.Compiler.NativeInterpreter() inferred = @infer_function native_interpreter foo(1.0, 2.0) show_steps=true show_ir=true ``` This gives a nice output such as the following: ```julia-repl ┌ Info: Initial result, before inference: └ result = foo(::Float64, ::Float64) => Any ┌ Info: Ending result, post-inference: └ result = foo(::Float64, ::Float64) => Float64 ┌ Info: Inferred source: │ result.result.src = │ CodeInfo( │ @ REPL[1]:3 within `foo' │ 1 ─ %1 = (y * x)::Float64 │ │ %2 = (x + %1)::Float64 │ └── return %2 └ ) ``` We can then define a custom `AbstractInterpreter` subtype that will override two specific pieces of the compilation process; managing the runtime inference cache. While it will transparently pass all information through to a bundled `NativeInterpreter`, it has the ability to force cache misses in order to re-infer things so that we can easily see how many methods (and which) would be inferred to compile a certain method: ```julia struct CountingInterpreter <: Compiler.AbstractInterpreter visited_methods::Set{Core.Compiler.MethodInstance} methods_inferred::Ref{UInt64} # Keep around a native interpreter so that we can sub off to "super" functions native_interpreter::Core.Compiler.NativeInterpreter end CountingInterpreter() = CountingInterpreter( Set{Core.Compiler.MethodInstance}(), Ref(UInt64(0)), Core.Compiler.NativeInterpreter(), ) InferenceParams(ci::CountingInterpreter) = InferenceParams(ci.native_interpreter) OptimizationParams(ci::CountingInterpreter) = OptimizationParams(ci.native_interpreter) get_world_counter(ci::CountingInterpreter) = get_world_counter(ci.native_interpreter) get_inference_cache(ci::CountingInterpreter) = get_inference_cache(ci.native_interpreter) function Core.Compiler.inf_for_methodinstance(interp::CountingInterpreter, mi::Core.Compiler.MethodInstance, min_world::UInt, max_world::UInt=min_world) # Hit our own cache; if it exists, pass on to the main runtime if mi in interp.visited_methods return Core.Compiler.inf_for_methodinstance(interp.native_interpreter, mi, min_world, max_world) end # Otherwise, we return `nothing`, forcing a cache miss return nothing end function Core.Compiler.cache_result(interp::CountingInterpreter, result::Core.Compiler.InferenceResult, min_valid::UInt, max_valid::UInt) push!(interp.visited_methods, result.linfo) interp.methods_inferred[] += 1 return Core.Compiler.cache_result(interp.native_interpreter, result, min_valid, max_valid) end function reset!(interp::CountingInterpreter) empty!(interp.visited_methods) interp.methods_inferred[] = 0 return nothing end ``` Running it on our testing function: ```julia counting_interpreter = CountingInterpreter() inferred = @infer_function counting_interpreter foo(1.0, 2.0) @info("Cumulative number of methods inferred: $(counting_interpreter.methods_inferred[])") inferred = @infer_function counting_interpreter foo(1, 2) show_ir=true @info("Cumulative number of methods inferred: $(counting_interpreter.methods_inferred[])") inferred = @infer_function counting_interpreter foo(1.0, 2.0) @info("Cumulative number of methods inferred: $(counting_interpreter.methods_inferred[])") reset!(counting_interpreter) @info("Cumulative number of methods inferred: $(counting_interpreter.methods_inferred[])") inferred = @infer_function counting_interpreter foo(1.0, 2.0) @info("Cumulative number of methods inferred: $(counting_interpreter.methods_inferred[])") ``` Also gives us a nice result: ``` [ Info: Cumulative number of methods inferred: 2 ┌ Info: Inferred source: │ result.result.src = │ CodeInfo( │ @ /Users/sabae/src/julia-compilerhack/AbstractInterpreterTest.jl:81 within `foo' │ 1 ─ %1 = (y * x)::Int64 │ │ %2 = (x + %1)::Int64 │ └── return %2 └ ) [ Info: Cumulative number of methods inferred: 4 [ Info: Cumulative number of methods inferred: 4 [ Info: Cumulative number of methods inferred: 0 [ Info: Cumulative number of methods inferred: 2 ```
- Loading branch information