Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
Now using urls for the image files
  • Loading branch information
benedict-96 authored Dec 5, 2023
1 parent 19b8c67 commit d7fc42a
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
<p align="center">
<img width="700px" src="logo.png#gh-light-mode-only"/>
<img width="700px" src="logo_dark.png#gh-dark-mode-only"/>
<img width="700px" src="https://github.com/JuliaGNI/GeometricMachineLearning.jl/assets/55493704/8d6d1410-b857-4e0f-8609-50e43be9a268#gh-light-mode-only"/>
<img width="700px" src="https://github.com/JuliaGNI/GeometricMachineLearning.jl/assets/55493704/014929d1-2297-4b2c-9359-58cadbb03a0e#gh-dark-mode-only"/>
</p>

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliagni.github.io/GeometricMachineLearning.jl/stable)
Expand Down Expand Up @@ -55,4 +55,4 @@ plot(trajectory_to_plot)
The optimization of the first layer is done on the Stiefel Manifold $St(n, N)$, and the optimizer used is the manifold version of Adam (see (Brantner, 2023)).

## References
- Brantner B. Generalizing Adam To Manifolds For Efficiently Training Transformers[J]. arXiv preprint arXiv:2305.16901, 2023.
- Brantner B. Generalizing Adam To Manifolds For Efficiently Training Transformers[J]. arXiv preprint arXiv:2305.16901, 2023.

0 comments on commit d7fc42a

Please sign in to comment.