Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes in evaluate and pow #369

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 66 additions & 57 deletions ext/TaylorSeriesIAExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,75 +8,84 @@ import TaylorSeries: evaluate, _evaluate, normalize_taylor, square

isdefined(Base, :get_extension) ? (using IntervalArithmetic) : (using ..IntervalArithmetic)

# Method used for Taylor1{Interval{T}}^n
for T in (:Taylor1, :TaylorN)
@eval begin
function ^(a::$T{Interval{S}}, n::Integer) where {S<:Real}
n == 0 && return one(a)
n == 1 && return copy(a)
n == 2 && return square(a)
n < 0 && return a^float(n)
return power_by_squaring(a, n)
@eval ^(a::$T{Interval{T}}, n::Integer) where {T<:Real} = TS.power_by_squaring(a, n)

@eval ^(a::$T{Interval{T}}, r::Rational) where {T<:Real} = a^float(r)

@eval function ^(a::$T{Interval{T}}, r::S) where {T<:Real, S<:Real}
isinteger(r) && r ≥ 0 && return TS.power_by_squaring(a, Integer(r))
a0 = constant_term(a) ∩ Interval(zero(T), T(Inf))
@assert !isempty(a0)
aux = one(a0^r)
a[0] = aux * a0
r == 0.5 && return sqrt(a)
if $T == TaylorN
if iszero(a0)
throw(DomainError(a,
"""The 0-th order TaylorN coefficient must be non-zero
in order to expand `^` around 0."""))
end
end
return TS._pow(a, r)
end
^(a::$T{Interval{S}}, r::Rational) where {S<:Real} = a^float(r)
end
end

function ^(a::Taylor1{Interval{T}}, r::S) where {T<:Real, S<:Real}
a0 = constant_term(a) ∩ Interval(zero(T), T(Inf))
aux = one(a0)^r

iszero(r) && return Taylor1(aux, a.order)
aa = one(aux) * a
aa[0] = one(aux) * a0
r == 1 && return aa
r == 2 && return square(aa)
r == 1/2 && return sqrt(aa)

l0 = findfirst(a)
lnull = trunc(Int, r*l0 )
if (a.order-lnull < 0) || (lnull > a.order)
return Taylor1( zero(aux), a.order)
end
c_order = l0 == 0 ? a.order : min(a.order, trunc(Int,r*a.order))
c = Taylor1(zero(aux), c_order)
for k = 0:c_order
TS.pow!(c, aa, c, r, k)
end
# _pow
function TS._pow(a::$T{Interval{S}}, n::Integer) where {S<:Real}
n < 0 && return TS._pow(a, float(n))
return TS.power_by_squaring(a, n)
end

return c
end
function ^(a::TaylorN{Interval{T}}, r::S) where {T<:Real, S<:Real}
a0 = constant_term(a) ∩ Interval(zero(T), T(Inf))
a0r = a0^r
aux = one(a0r)

iszero(r) && return TaylorN(aux, a.order)
aa = aux * a
aa[0] = aux * a0
r == 1 && return aa
r == 2 && return square(aa)
r == 1/2 && return sqrt(aa)
isinteger(r) && return aa^round(Int,r)

# @assert !iszero(a0)
iszero(a0) && throw(DomainError(a,
"""The 0-th order TaylorN coefficient must be non-zero
in order to expand `^` around 0."""))

c = TaylorN( a0r, a.order)
for ord in 1:a.order
TS.pow!(c, aa, c, r, ord)
end
function TS._pow(a::$T{Interval{T}}, r::S) where {T<:Real, S<:Real}
isinteger(r) && r ≥ 0 && return TS.power_by_squaring(a, Integer(r))
a0 = constant_term(a) ∩ Interval(zero(T), T(Inf))
@assert !isempty(a0)
aux = one(a0^r)
a[0] = aux * a0
r == 0.5 && return sqrt(a)
if $T == Taylor1
l0 = findfirst(a)
# Index of first non-zero coefficient of the result; must be integer
!isinteger(r*l0) && throw(DomainError(a,
"""The 0-th order Taylor1 coefficient must be non-zero
to raise the Taylor1 polynomial to a non-integer exponent."""))
lnull = trunc(Int, r*l0 )
(lnull > a.order) && return $T( zero(aux), a.order)
c_order = l0 == 0 ? a.order : min(a.order, trunc(Int, r*a.order))
else
if iszero(a0)
throw(DomainError(a,
"""The 0-th order TaylorN coefficient must be non-zero
in order to expand `^` around 0."""))
end
c_order = a.order
end
#
c = $T(zero(aux), c_order)
aux0 = zero(c)
for k in eachindex(c)
TS.pow!(c, a, aux0, r, k)
end
return c
end

return c
function TS.pow!(res::$T{Interval{T}}, a::$T{Interval{T}}, aux::$T{Interval{T}},
r::S, k::Int) where {T<:Real, S<:Integer}
(r == 0) && return TS.one!(res, a, k)
(r == 1) && return TS.identity!(res, a, k)
(r == 2) && return TS.sqr!(res, a, k)
TS.power_by_squaring!(res, a, aux, r)
return nothing
end
end
end


for T in (:Taylor1, :TaylorN)
@eval function log(a::$T{Interval{S}}) where {S<:Real}
iszero(constant_term(a)) && throw(DomainError(a,
"""The 0-th order coefficient must be non-zero in order to expand `log` around 0."""))
"""The 0-th order coefficient must be non-zero in order to expand `log` around 0."""))
a0 = constant_term(a) ∩ Interval(S(0.0), S(Inf))
order = a.order
aux = log(a0)
Expand Down
107 changes: 48 additions & 59 deletions src/evaluate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -254,39 +254,32 @@ Note that the syntax `a(vals)` is equivalent to
`evaluate(a)`; use a(b::Bool, x) corresponds to
evaluate(a, x, sorting=b).
"""
function evaluate(a::TaylorN, vals::NTuple{N,<:Number};
sorting::Bool=true) where {N}
function evaluate(a::TaylorN, vals::NTuple{N,<:Number}; sorting::Bool=true) where {N}
@assert get_numvars() == N
return _evaluate(a, vals, Val(sorting))
end

function evaluate(a::TaylorN, vals::NTuple{N,<:AbstractSeries};
sorting::Bool=false) where {N}
function evaluate(a::TaylorN, vals::NTuple{N,<:AbstractSeries}; sorting::Bool=false) where {N}
@assert get_numvars() == N
return _evaluate(a, vals, Val(sorting))
end

evaluate(a::TaylorN{T}, vals::AbstractVector{<:Number};
sorting::Bool=true) where {T<:NumberNotSeries} =
evaluate(a, (vals...,); sorting=sorting)
sorting::Bool=true) where {T<:NumberNotSeries} = evaluate(a, (vals...,); sorting=sorting)

evaluate(a::TaylorN{T}, vals::AbstractVector{<:AbstractSeries};
sorting::Bool=false) where {T<:NumberNotSeries} =
evaluate(a, (vals...,); sorting=sorting)
sorting::Bool=false) where {T<:NumberNotSeries} = evaluate(a, (vals...,); sorting=sorting)

evaluate(a::TaylorN{Taylor1{T}}, vals::AbstractVector{S};
sorting::Bool=false) where {T, S} =
evaluate(a, (vals...,); sorting=sorting)
sorting::Bool=false) where {T, S} = evaluate(a, (vals...,); sorting=sorting)

function evaluate(a::TaylorN{T}, s::Symbol, val::S) where
{T<:Number, S<:NumberNotSeriesN}
function evaluate(a::TaylorN{T}, s::Symbol, val::S) where {T<:Number, S<:NumberNotSeriesN}
ind = lookupvar(s)
@assert (1 ≤ ind ≤ get_numvars()) "Symbol is not a TaylorN variable; see `get_variable_names()`"
return evaluate(a, ind, val)
end

function evaluate(a::TaylorN{T}, ind::Int, val::S) where
{T<:Number, S<:NumberNotSeriesN}
function evaluate(a::TaylorN{T}, ind::Int, val::S) where {T<:Number, S<:NumberNotSeriesN}
@assert (1 ≤ ind ≤ get_numvars()) "Invalid `ind`; it must be between 1 and `get_numvars()`"
R = promote_type(T,S)
return _evaluate(convert(TaylorN{R}, a), ind, convert(R, val))
Expand All @@ -305,8 +298,7 @@ function evaluate(a::TaylorN{T}, ind::Int, val::TaylorN) where {T<:Number}
return _evaluate(a, ind, val)
end

evaluate(a::TaylorN{T}, x::Pair{Symbol,S}) where {T, S} =
evaluate(a, first(x), last(x))
evaluate(a::TaylorN{T}, x::Pair{Symbol,S}) where {T, S} = evaluate(a, first(x), last(x))

evaluate(a::TaylorN{T}) where {T<:Number} = constant_term(a)

Expand Down Expand Up @@ -338,14 +330,6 @@ function _evaluate(a::TaylorN{T}, vals::NTuple{N,<:Number}) where {N,T<:Number}
return suma
end

function _evaluate!(res::Vector{TaylorN{T}}, a::TaylorN{T}, vals::NTuple{N,<:TaylorN},
valscache::Vector{TaylorN{T}}, aux::TaylorN{T}) where {N,T<:Number}
@inbounds for homPol in eachindex(a)
_evaluate!(res[homPol+1], a[homPol], vals, valscache, aux)
end
return nothing
end

function _evaluate(a::TaylorN{T}, vals::NTuple{N,<:TaylorN}) where {N,T<:Number}
R = promote_type(T, TS.numtype(vals[1]))
suma = [TaylorN(zero(R), vals[1].order) for _ in eachindex(a)]
Expand Down Expand Up @@ -375,27 +359,37 @@ function _evaluate(a::TaylorN{T}, ind::Int, val::TaylorN{T}) where {T<:NumberNot
return suma
end

function _evaluate!(res::Vector{TaylorN{T}}, a::TaylorN{T}, vals::NTuple{N,<:TaylorN},
valscache::Vector{TaylorN{T}}, aux::TaylorN{T}) where {N,T<:Number}
@inbounds for homPol in eachindex(a)
_evaluate!(res[homPol+1], a[homPol], vals, valscache, aux)
end
return nothing
end

function _evaluate!(suma::TaylorN{T}, a::HomogeneousPolynomial{T}, ind::Int, val::T) where
{T<:NumberNotSeriesN}
order = a.order
orderTN = get_order()
if order == 0
suma[0] = a[1]*one(val)
suma[0][1] = a[1]*one(val)
return nothing
end
vv = val .^ (0:order)
# ct = @isonethread coeff_table[order+1]
ct = deepcopy(coeff_table[order+1])
vct = zero(coeff_table[order+1][1])
zct = zero(coeff_table[order+1][1])
for (i, a_coeff) in enumerate(a.coeffs)
iszero(a_coeff) && continue
if ct[i][ind] == 0
vpow = coeff_table[order+1][i][ind]
if vpow == 0
suma[order][i] += a_coeff
continue
end
vpow = ct[i][ind]
vct .= coeff_table[order+1][i]
zct[ind] = vpow
red_order = order - vpow
ct[i][ind] -= vpow
kdic = in_base(get_order(), ct[i])
ct[i][ind] += vpow
kdic = in_base(orderTN, vct - zct)
zct[ind] = 0
pos = pos_table[red_order+1][kdic]
suma[red_order][pos] += a_coeff * vv[vpow+1]
end
Expand All @@ -406,32 +400,33 @@ function _evaluate!(suma::TaylorN{T}, a::HomogeneousPolynomial{T}, ind::Int,
val::TaylorN{T}, aux::TaylorN{T}) where {T<:NumberNotSeriesN}
order = a.order
if order == 0
suma[0] = a[1]
suma[0][1] = a[1]
return nothing
end
vv = zero(suma)
ct = coeff_table[order+1]
vvaux = zero(vv)
za = zero(a)
for (i, a_coeff) in enumerate(a.coeffs)
iszero(a_coeff) && continue
if ct[i][ind] == 0
vpow = coeff_table[order+1][i][ind]
if vpow == 0
suma[order][i] += a_coeff
continue
end
za[i] = a_coeff
zero!(aux)
_evaluate!(aux, za, ind, one(T))
za[i] = zero(T)
vpow = ct[i][ind]
# vv = val ^ vpow
if constant_term(val) == 0
vv = val ^ vpow
zero!(vvaux)
power_by_squaring!(vv, val, vvaux, vpow)
else
for ordQ in eachindex(val)
zero!(vv, ordQ)
pow!(vv, val, vv, vpow, ordQ)
pow!(vv, val, vvaux, vpow, ordQ)
end
end
za[i] = a_coeff
zero!(aux)
_evaluate!(aux, za, ind, one(T))
za[i] = zero(a_coeff)
for ordQ in eachindex(suma)
mul!(suma, vv, aux, ordQ)
end
Expand All @@ -456,7 +451,7 @@ evaluate(A::AbstractArray{TaylorN{T}}) where {T<:Number} = evaluate.(A)
#function-like behavior for TaylorN
(p::TaylorN)(x) = evaluate(p, x)
(p::TaylorN)() = evaluate(p)
(p::TaylorN)(s::S, x) where {S<:Union{Symbol, Int}}= evaluate(p, s, x)
(p::TaylorN)(s::S, x) where {S<:Union{Symbol, Int}} = evaluate(p, s, x)
(p::TaylorN)(x::Pair) = evaluate(p, first(x), last(x))
(p::TaylorN)(x, v::Vararg{T}) where {T} = evaluate(p, (x, v...,))
(p::TaylorN)(b::Bool, x) = evaluate(p, x, sorting=b)
Expand All @@ -470,39 +465,33 @@ evaluate(A::AbstractArray{TaylorN{T}}) where {T<:Number} = evaluate.(A)


"""
evaluate!(x, δt, x0)
evaluate!(x, δt, dest)

Evaluates each element of `x::AbstractArray{Taylor1{T}}`,
representing the Taylor expansion for the dependent variables
of an ODE at *time* `δt`. It updates the vector `x0` with the
of an ODE at *time* `δt`. It updates the vector `dest` with the
computed values.
"""
function evaluate!(x::AbstractArray{Taylor1{T}}, δt::S,
x0::AbstractArray{T}) where {T<:Number, S<:Number}
x0 .= evaluate.( x, δt )
dest::AbstractArray{T}) where {T<:Number, S<:Number}
dest .= evaluate.( x, δt )
return nothing
end
# function evaluate!(x::AbstractArray{Taylor1{Taylor1{T}}}, δt::Taylor1{T},
# x0::AbstractArray{Taylor1{T}}) where {T<:Number}
# x0 .= evaluate.( x, Ref(δt) )
# # x0 .= evaluate.( x, δt )
# return nothing
# end

## In place evaluation of multivariable arrays
function evaluate!(x::AbstractArray{TaylorN{T}}, δx::Array{T,1},
x0::AbstractArray{T}) where {T<:Number}
x0 .= evaluate.( x, Ref(δx) )
dest::AbstractArray{T}) where {T<:Number}
dest .= evaluate.( x, Ref(δx) )
return nothing
end

function evaluate!(x::AbstractArray{TaylorN{T}}, δx::Array{TaylorN{T},1},
x0::AbstractArray{TaylorN{T}}; sorting::Bool=true) where {T<:NumberNotSeriesN}
x0 .= evaluate.( x, Ref(δx), sorting = sorting)
dest::AbstractArray{TaylorN{T}}; sorting::Bool=true) where {T<:NumberNotSeriesN}
dest .= evaluate.( x, Ref(δx), sorting = sorting)
return nothing
end

function evaluate!(a::TaylorN{T}, vals::NTuple{N,TaylorN{T}}, dest::TaylorN{T},
function _evaluate!(a::TaylorN{T}, vals::NTuple{N,TaylorN{T}}, dest::TaylorN{T},
valscache::Vector{TaylorN{T}}, aux::TaylorN{T}) where {N,T<:Number}
@inbounds for homPol in eachindex(a)
_evaluate!(dest, a[homPol], vals, valscache, aux)
Expand All @@ -518,7 +507,7 @@ function evaluate!(a::AbstractArray{TaylorN{T}}, vals::NTuple{N,TaylorN{T}},
# loop over elements of `a`
for i in eachindex(a)
(!iszero(dest[i])) && zero!(dest[i])
evaluate!(a[i], vals, dest[i], valscache, aux)
_evaluate!(a[i], vals, dest[i], valscache, aux)
end
return nothing
end
Expand Down
Loading
Loading