Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2023-05-28-xlm_longformer_base_english_legal_en #13839

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English Legal Longformer Large Embeddings Model
author: John Snow Labs
name: longformer_large_english_legal
date: 2023-05-28
tags: [en, longformerformaskedlm, transformer, open_source, legal, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: LongformerEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained Legal Longformer Large Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `legal-longformer-large` is a English model originally trained by `lexlms`.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/longformer_large_english_legal_en_4.4.2_3.0_1685289330980.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/longformer_large_english_legal_en_4.4.2_3.0_1685289330980.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = LongformerEmbeddings.pretrained("longformer_large_english_legal","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val embeddings = LongformerEmbeddings.pretrained("longformer_large_english_legal","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I love Spark NLP").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|longformer_large_english_legal|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[sentence, token]|
|Output Labels:|[embeddings]|
|Language:|en|
|Size:|1.6 GB|
|Case sensitive:|true|
|Max sentence length:|4096|

## References

https://huggingface.co/lexlms/legal-longformer-large
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English Legal XLM-Longformer Base Embeddings Model
author: John Snow Labs
name: xlm_longformer_base_english_legal
date: 2023-05-28
tags: [en, longformerformaskedlm, transformer, open_source, legal, tensorflow]
task: Embeddings
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
engine: tensorflow
annotator: LongformerEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained Legal XLM-Longformer Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. `legal-xlm-longformer-base` is a English model originally trained by `joelito`.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/xlm_longformer_base_english_legal_en_4.4.2_3.0_1685286936656.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/xlm_longformer_base_english_legal_en_4.4.2_3.0_1685286936656.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = LongformerEmbeddings.pretrained("xlm_longformer_base_english_legal","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val embeddings = LongformerEmbeddings.pretrained("xlm_longformer_base_english_legal","en")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I love Spark NLP").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|xlm_longformer_base_english_legal|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[sentence, token]|
|Output Labels:|[embeddings]|
|Language:|en|
|Size:|788.6 MB|
|Case sensitive:|true|
|Max sentence length:|4096|

## References

https://huggingface.co/joelito/legal-xlm-longformer-base