Skip to content

Commit

Permalink
Add model 2023-07-28-twitter_xlm_roberta_base_sentiment_en (#13905)
Browse files Browse the repository at this point in the history
Co-authored-by: veerdhwaj <[email protected]>
  • Loading branch information
jsl-models and veerdhwaj authored Jul 28, 2023
1 parent 182bc05 commit 9a1bea5
Showing 1 changed file with 88 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
---
layout: model
title: twitter-xlm-roberta-base-sentiment
author: veerdhwaj
name: twitter_xlm_roberta_base_sentiment
date: 2023-07-28
tags: [sentiment, roberta, en, open_source, tensorflow]
task: Text Classification
language: en
edition: Spark NLP 5.0.0
spark_version: 3.2
supported: false
engine: tensorflow
annotator: XlmRoBertaForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This is a multilingual XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages
Huggingface : https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment

## Predicted Entities

`sentiment`

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/community.johnsnowlabs.com/veerdhwaj/twitter_xlm_roberta_base_sentiment_en_5.0.0_3.2_1690535217423.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://community.johnsnowlabs.com/veerdhwaj/twitter_xlm_roberta_base_sentiment_en_5.0.0_3.2_1690535217423.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = XlmRoBertaForSequenceClassification.pretrained('twitter_xlm_roberta_base_sentiment')
.setInputCols("token", "document")
.setOutputCol("class")
.setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(
documentAssembler,
tokenizer,
sequenceClassifier
))

val data = Seq("I loved this movie when I was a child.", "It was pretty boring.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.select("class.result").show(false)
```

</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|twitter_xlm_roberta_base_sentiment|
|Compatibility:|Spark NLP 5.0.0+|
|License:|Open Source|
|Edition:|Community|
|Input Labels:|[document, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|1.0 GB|
|Case sensitive:|true|
|Max sentence length:|512|

0 comments on commit 9a1bea5

Please sign in to comment.