-
Notifications
You must be signed in to change notification settings - Fork 717
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARKNLP-1105] Introducing AlbertForMultipleChoice
- Loading branch information
Showing
10 changed files
with
4,188 additions
and
68 deletions.
There are no files selected for viewing
529 changes: 529 additions & 0 deletions
529
...ples/python/transformers/onnx/HuggingFace_ONNX_in_Spark_NLP_AlbertForMultipleChoice.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2,903 changes: 2,903 additions & 0 deletions
2,903
...hon/transformers/openvino/HuggingFace_OpenVINO_in_Spark_NLP_AlbertForMultipleChoice.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
161 changes: 161 additions & 0 deletions
161
python/sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from sparknlp.common import * | ||
|
||
class AlbertForMultipleChoice(AnnotatorModel, | ||
HasCaseSensitiveProperties, | ||
HasBatchedAnnotate, | ||
HasEngine, | ||
HasMaxSentenceLengthLimit): | ||
"""AlbertForMultipleChoice can load ALBERT Models with a multiple choice classification head on top | ||
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> spanClassifier = AlbertForMultipleChoice.pretrained() \\ | ||
... .setInputCols(["document_question", "document_context"]) \\ | ||
... .setOutputCol("answer") | ||
The default model is ``"albert_base_uncased_multiple_choice"``, if no name is | ||
provided. | ||
For available pretrained models please see the `Models Hub | ||
<https://sparknlp.org/models?task=Multiple+Choice>`__. | ||
To see which models are compatible and how to import them see | ||
`Import Transformers into Spark NLP 🚀 | ||
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT, DOCUMENT`` ``CHUNK`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
batchSize | ||
Batch size. Large values allows faster processing but requires more | ||
memory, by default 8 | ||
caseSensitive | ||
Whether to ignore case in tokens for embeddings matching, by default | ||
False | ||
maxSentenceLength | ||
Max sentence length to process, by default 512 | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = MultiDocumentAssembler() \\ | ||
... .setInputCols(["question", "context"]) \\ | ||
... .setOutputCols(["document_question", "document_context"]) | ||
>>> questionAnswering = AlbertForMultipleChoice.pretrained() \\ | ||
... .setInputCols(["document_question", "document_context"]) \\ | ||
... .setOutputCol("answer") \\ | ||
... .setCaseSensitive(False) | ||
>>> pipeline = Pipeline().setStages([ | ||
... documentAssembler, | ||
... questionAnswering | ||
... ]) | ||
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("answer.result").show(truncate=False) | ||
+--------------------+ | ||
|result | | ||
+--------------------+ | ||
|[France] | | ||
+--------------------+ | ||
""" | ||
name = "AlbertForMultipleChoice" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.CHUNK | ||
|
||
choicesDelimiter = Param(Params._dummy(), | ||
"choicesDelimiter", | ||
"Delimiter character use to split the choices", | ||
TypeConverters.toString) | ||
|
||
def setChoicesDelimiter(self, value): | ||
"""Sets delimiter character use to split the choices | ||
Parameters | ||
---------- | ||
value : string | ||
Delimiter character use to split the choices | ||
""" | ||
return self._set(caseSensitive=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForMultipleChoice", | ||
java_model=None): | ||
super(AlbertForMultipleChoice, self).__init__( | ||
classname=classname, | ||
java_model=java_model | ||
) | ||
self._setDefault( | ||
batchSize=4, | ||
maxSentenceLength=512, | ||
caseSensitive=False, | ||
choicesDelimiter = "," | ||
) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
BertForQuestionAnswering | ||
The restored model | ||
""" | ||
from sparknlp.internal import _AlbertMultipleChoiceLoader | ||
jModel = _AlbertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj | ||
return AlbertForMultipleChoice(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="albert_base_uncased_multiple_choice", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default | ||
"bert_base_uncased_multiple_choice" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
BertForQuestionAnswering | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(AlbertForMultipleChoice, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
79 changes: 79 additions & 0 deletions
79
python/test/annotator/classifier_dl/albert_for_multiple_choice_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Copyright 2017-2024 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import pytest | ||
|
||
from sparknlp.annotator.classifier_dl.albert_for_multiple_choice import AlbertForMultipleChoice | ||
from sparknlp.base import * | ||
from test.util import SparkContextForTest | ||
|
||
|
||
class AlbertForMultipleChoiceTestSetup(unittest.TestCase): | ||
def setUp(self): | ||
|
||
sparkNLPModelPath = "/media/danilo/Data/Danilo/JSL/models/transformers/spark-nlp" | ||
|
||
self.spark = SparkContextForTest.spark | ||
self.question = "The Eiffel Tower is located in which country?" | ||
self.choices = "Germany, France, Italy" | ||
|
||
self.spark = SparkContextForTest.spark | ||
empty_df = self.spark.createDataFrame([[""]]).toDF("text") | ||
|
||
document_assembler = MultiDocumentAssembler() \ | ||
.setInputCols(["question", "context"]) \ | ||
.setOutputCols(["document_question", "document_context"]) | ||
|
||
albert_for_multiple_choice = AlbertForMultipleChoice.load(sparkNLPModelPath + "/openvino/albert_multiple_choice_openvino") \ | ||
.setInputCols(["document_question", "document_context"]) \ | ||
.setOutputCol("answer") | ||
|
||
pipeline = Pipeline(stages=[document_assembler, albert_for_multiple_choice]) | ||
|
||
self.pipeline_model = pipeline.fit(empty_df) | ||
|
||
|
||
# @pytest.mark.slow | ||
class AlbertForMultipleChoiceTest(AlbertForMultipleChoiceTestSetup, unittest.TestCase): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
self.data = self.spark.createDataFrame([[self.question, self.choices]]).toDF("question","context") | ||
self.data.show(truncate=False) | ||
|
||
def test_run(self): | ||
result_df = self.pipeline_model.transform(self.data) | ||
result_df.show(truncate=False) | ||
for row in result_df.collect(): | ||
self.assertTrue(row["answer"][0].result != "") | ||
|
||
|
||
# @pytest.mark.slow | ||
class LightAlbertForMultipleChoiceTest(AlbertForMultipleChoiceTestSetup, unittest.TestCase): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
|
||
def runTest(self): | ||
light_pipeline = LightPipeline(self.pipeline_model) | ||
annotations_result = light_pipeline.fullAnnotate(self.question,self.choices) | ||
print(annotations_result) | ||
for result in annotations_result: | ||
self.assertTrue(result["answer"][0].result != "") | ||
|
||
result = light_pipeline.annotate(self.question,self.choices) | ||
print(result) | ||
self.assertTrue(result["answer"] != "") |
Oops, something went wrong.