Repository for the paper "Self-supervised Domain adaptation for Computer Vision Tasks".
@article{self-supervised-da:2019,
title={Self-supervised Domain Adaptation for Computer Vision Tasks},
author={Jiaolong, Xu and Liang, Xiao and Antonio M. López},
journal={IEEE Access},
volume={7},
pages={156694-156706}
year={2019}
}
-
python3.5+
-
pytorch 1.0+
Please find the PACS dataset from this link
The directories of the dataset are as following:
.
├── datasets
│ └── PACS
│ └── kfold
│ ├── art_painting
│ ├── cartoon
│ ├── photo
│ └── sketch
The configuration files for each experiment can be found at config/
folder.
For example:
python3 main.py --config configs/rotate_pacs_photo.yaml
To reproduce the results, running each experiment for three repeatitions with random seeds from 100
, 200
and 300
.
Method | art paint. | cartoon | sketches | photo | Avg. |
---|---|---|---|---|---|
SRC[1] | 77.85 | 74.86 | 67.74 | 95.73 | 79.05 |
JigGen[1] | 84.88 | 81.07 | 79.05 | 97.96 | 85.74 |
Ours(SRC) | 79.33 | 76.75 | 64.40 | 96.39 | 79.22 |
Ours(Jigsaw) | 84.93 | 83.85 | 69.04 | 93.92 | 82.94 |
Ours(Rot) | 89.35 | 84.14 | 74.49 | 98.24 | 86.56 |
Thanks for the open source of JigGen for reference implementation!
[1] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by solving jigsaw puzzles. In CVPR, 2019.