Skip to content

JeffersonLPLima/Fast_Sentence_Embeddings

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status Coverage Status Downloads Language grade: Python Code style: black License: GPL3

Fast Sentence Embeddings (fse)

Fast Sentence Embeddings is a Python library that serves as an addition to Gensim. This library is intended to compute sentence vectors for large collections of sentences or documents.

Disclaimer: I am currently working full time. Unfortunately, I have yet to find time to add all the features I'd like to see. Especially the API needs some overhaul and we need support for gensim 4.0.0. If you want to support fse, take a quick survey to improve it :-)

Features

Find the corresponding blog post(s) here:

fse implements three algorithms for sentence embeddings. You can choose between unweighted sentence averages, smooth inverse frequency averages, and unsupervised smooth inverse frequency averages.

Key features of fse are:

[X] Up to 500.000 sentences / second (1)

[X] Supports Average, SIF, and uSIF Embeddings

[X] Full support for Gensims Word2Vec and all other compatible classes

[X] Full support for Gensims FastText with out-of-vocabulary words

[X] Induction of word frequencies for pre-trained embeddings

[X] Incredibly fast Cython core routines

[X] Dedicated input file formats for easy usage (including disk streaming)

[X] Ram-to-disk training for large corpora

[X] Disk-to-disk training for even larger corpora

[X] Many fail-safe checks for easy usage

[X] Simple interface for developing your own models

[X] Extensive documentation of all functions

[X] Optimized Input Classes

(1) May vary significantly from system to system (i.e. by using swap memory) and processing. I regularly observe 300k-500k sentences/s for preprocessed data on my Macbook (2016). Visit Tutorial.ipynb for an example.

Things I will work on next:

[ ] MaxPooling / Hierarchical Pooling Embedding

[ ] Approximate Nearest Neighbor Search for SentenceVectors

Installation

This software depends on NumPy, Scipy, Scikit-learn, Gensim, and Wordfreq. You must have them installed prior to installing fse. Required Python version is 3.6.

As with gensim, it is also recommended you install a BLAS library before installing fse.

The simple way to install fse is:

pip install -U fse

In case you want to build from source, just run:

python setup.py install

If building the Cython extension fails (you will be notified), try:

pip install -U git+https://github.com/oborchers/Fast_Sentence_Embeddings

Usage

Within the folder nootebooks you can find the following guides:

Tutorial.ipynb offers a detailed walk-through of some of the most important functions fse has to offer.

STS-Benchmarks.ipynb contains an example of how to use the library with pre-trained models to replicate the STS Benchmark results [4] reported in the papers.

Speed Comparision.ipynb compares the speed between the numpy and the cython routines.

In order to use the fse model, you first need some pre-trained gensim word embedding model, which is then used by fse to compute the sentence embeddings.

After computing sentence embeddings, you can use them in supervised or unsupervised NLP applications, as they serve as a formidable baseline.

The models presented are based on

  • Deep-averaging embeddings [1]
  • Smooth inverse frequency embeddings [2]
  • Unsupervised smooth inverse frequency embeddings [3]

Credits to Radim Řehůřek and all contributors for the awesome library and code that Gensim provides. A whole lot of the code found in this lib is based on Gensim.

In order to use fse you must first estimate a Gensim model which contains a gensim.models.keyedvectors.BaseKeyedVectors class, for example Word2Vec or Fasttext. Then you can proceed to compute sentence embeddings for a corpus.

from gensim.models import FastText
sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]
ft = FastText(sentences, min_count=1, size=10)

from fse.models import Average
from fse import IndexedList
model = Average(ft)
model.train(IndexedList(sentences))

model.sv.similarity(0,1)

fse offers multi-thread support out of the box. However, for most applications a single thread will most likely be sufficient.

To install fse on Colab, check out: https://colab.research.google.com/drive/1qq9GBgEosG7YSRn7r6e02T9snJb04OEi

Results

Model  STS Benchmark
CBOW-Paranmt  79.85
uSIF-Paranmt  79.02
SIF-Paranmt  76.75
SIF-Paragram  73.86
uSIF-Paragram  73.64
SIF-FT  73.38
SIF-Glove  71.95
SIF-W2V  71.12
uSIF-FT  69.4
uSIF-Glove  67.16
uSIF-W2V  66.99
CBOW-W2V  61.54
CBOW-Paragram  50.38
CBOW-FT  48.49
CBOW-Glove  40.41

Changelog

0.1.15 from 0.1.11:

  • Fixed major FT Ngram computation bug
  • Rewrote the input class. Turns out NamedTuple was pretty slow.
  • Added further unittests
  • Added documentation
  • Major speed improvements
  • Fixed division by zero for empty sentences
  • Fixed overflow when infer method is used with too many sentences
  • Fixed similar_by_sentence bug

Literature

  1. Iyyer M, Manjunatha V, Boyd-Graber J, Daumé III H (2015) Deep Unordered Composition Rivals Syntactic Methods for Text Classification. Proc. 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang. Process., 1681–1691.

  2. Arora S, Liang Y, Ma T (2017) A Simple but Tough-to-Beat Baseline for Sentence Embeddings. Int. Conf. Learn. Represent. (Toulon, France), 1–16.

  3. Ethayarajh K (2018) Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline. Proceedings of the 3rd Workshop on Representation Learning for NLP. (Toulon, France), 91–100.

  4. Eneko Agirre, Daniel Cer, Mona Diab, Iñigo Lopez-Gazpio, Lucia Specia. Semeval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation. Proceedings of SemEval 2017.

Copyright

Author: Oliver Borchers [email protected]

Copyright (C) 2019 Oliver Borchers

Citation

If you found this software useful, please cite it in your publication.

@misc{Borchers2019,
	author = {Borchers, Oliver},
	title = {Fast sentence embeddings},
	year = {2019},
	publisher = {GitHub},
	journal = {GitHub Repository},
	howpublished = {\url{https://github.com/oborchers/Fast_Sentence_Embeddings}},
}

About

Compute Sentence Embeddings Fast!

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 69.3%
  • Jupyter Notebook 30.6%
  • C++ 0.1%