-
Notifications
You must be signed in to change notification settings - Fork 310
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature]Support Mircosoft Phi3 4K&128K Instruct Models (#603)
* support phi3 * dispatch sft * rename configs * add phi3 llava configs * dispatch llava * fix phi3 dispatch (#3) * remove readme; fix ckpt name * remove unused file * add comma * fix typo * rename * set dataloader_num_workers = 0 --------- Co-authored-by: whcao <[email protected]> Co-authored-by: linzhihao <[email protected]>
- Loading branch information
1 parent
649cab9
commit ffc4ea8
Showing
12 changed files
with
1,957 additions
and
5 deletions.
There are no files selected for viewing
205 changes: 205 additions & 0 deletions
205
..._336/finetune/llava_phi3_mini_4k_instruct_full_clip_vit_large_p14_336_e1_gpu8_finetune.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, | ||
LoggerHook, ParamSchedulerHook) | ||
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR | ||
from torch.optim import AdamW | ||
from transformers import (AutoModelForCausalLM, AutoTokenizer, | ||
CLIPImageProcessor, CLIPVisionModel) | ||
|
||
from xtuner.dataset import LLaVADataset | ||
from xtuner.dataset.collate_fns import default_collate_fn | ||
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory | ||
from xtuner.dataset.samplers import LengthGroupedSampler | ||
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook | ||
from xtuner.engine.runner import TrainLoop | ||
from xtuner.model import LLaVAModel | ||
from xtuner.utils import PROMPT_TEMPLATE | ||
|
||
####################################################################### | ||
# PART 1 Settings # | ||
####################################################################### | ||
# Model | ||
llm_name_or_path = 'microsoft/Phi-3-mini-4k-instruct' | ||
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336' | ||
# Specify the pretrained pth | ||
pretrained_pth = './work_dirs/llava_phi3_mini_4k_instruct_clip_vit_large_p14_336_e1_gpu8_pretrain/iter_2181.pth' # noqa: E501 | ||
|
||
# Data | ||
data_root = './data/llava_data/' | ||
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json' | ||
image_folder = data_root + 'llava_images' | ||
prompt_template = PROMPT_TEMPLATE.phi3_chat | ||
max_length = int(2048 - (336 / 14)**2) | ||
|
||
# Scheduler & Optimizer | ||
batch_size = 8 # per_device | ||
accumulative_counts = 2 | ||
dataloader_num_workers = 4 | ||
max_epochs = 1 | ||
optim_type = AdamW | ||
lr = 2e-5 | ||
betas = (0.9, 0.999) | ||
weight_decay = 0 | ||
max_norm = 1 # grad clip | ||
warmup_ratio = 0.03 | ||
|
||
# Save | ||
save_steps = 1000 | ||
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) | ||
|
||
# Evaluate the generation performance during the training | ||
evaluation_freq = 1000 | ||
SYSTEM = '' | ||
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg' | ||
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture'] | ||
|
||
####################################################################### | ||
# PART 2 Model & Tokenizer & Image Processor # | ||
####################################################################### | ||
tokenizer = dict( | ||
type=AutoTokenizer.from_pretrained, | ||
pretrained_model_name_or_path=llm_name_or_path, | ||
trust_remote_code=True, | ||
padding_side='right') | ||
|
||
image_processor = dict( | ||
type=CLIPImageProcessor.from_pretrained, | ||
pretrained_model_name_or_path=visual_encoder_name_or_path, | ||
trust_remote_code=True) | ||
|
||
model = dict( | ||
type=LLaVAModel, | ||
freeze_llm=False, | ||
freeze_visual_encoder=True, | ||
pretrained_pth=pretrained_pth, | ||
llm=dict( | ||
type=AutoModelForCausalLM.from_pretrained, | ||
pretrained_model_name_or_path=llm_name_or_path, | ||
trust_remote_code=True), | ||
visual_encoder=dict( | ||
type=CLIPVisionModel.from_pretrained, | ||
pretrained_model_name_or_path=visual_encoder_name_or_path)) | ||
|
||
####################################################################### | ||
# PART 3 Dataset & Dataloader # | ||
####################################################################### | ||
llava_dataset = dict( | ||
type=LLaVADataset, | ||
data_path=data_path, | ||
image_folder=image_folder, | ||
tokenizer=tokenizer, | ||
image_processor=image_processor, | ||
dataset_map_fn=llava_map_fn, | ||
template_map_fn=dict( | ||
type=template_map_fn_factory, template=prompt_template), | ||
max_length=max_length, | ||
pad_image_to_square=True) | ||
|
||
train_dataloader = dict( | ||
batch_size=batch_size, | ||
num_workers=dataloader_num_workers, | ||
pin_memory=True, | ||
dataset=llava_dataset, | ||
sampler=dict( | ||
type=LengthGroupedSampler, | ||
length_property='modality_length', | ||
per_device_batch_size=batch_size * accumulative_counts), | ||
collate_fn=dict(type=default_collate_fn)) | ||
|
||
####################################################################### | ||
# PART 4 Scheduler & Optimizer # | ||
####################################################################### | ||
# optimizer | ||
optim_wrapper = dict( | ||
type=AmpOptimWrapper, | ||
optimizer=dict( | ||
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), | ||
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), | ||
accumulative_counts=accumulative_counts, | ||
loss_scale='dynamic', | ||
dtype='float16') | ||
|
||
# learning policy | ||
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 | ||
param_scheduler = [ | ||
dict( | ||
type=LinearLR, | ||
start_factor=1e-5, | ||
by_epoch=True, | ||
begin=0, | ||
end=warmup_ratio * max_epochs, | ||
convert_to_iter_based=True), | ||
dict( | ||
type=CosineAnnealingLR, | ||
eta_min=0.0, | ||
by_epoch=True, | ||
begin=warmup_ratio * max_epochs, | ||
end=max_epochs, | ||
convert_to_iter_based=True) | ||
] | ||
|
||
# train, val, test setting | ||
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) | ||
|
||
####################################################################### | ||
# PART 5 Runtime # | ||
####################################################################### | ||
# Log the dialogue periodically during the training process, optional | ||
custom_hooks = [ | ||
dict(type=DatasetInfoHook, tokenizer=tokenizer), | ||
dict( | ||
type=EvaluateChatHook, | ||
tokenizer=tokenizer, | ||
image_processor=image_processor, | ||
every_n_iters=evaluation_freq, | ||
evaluation_inputs=evaluation_inputs, | ||
evaluation_images=evaluation_images, | ||
system=SYSTEM, | ||
prompt_template=prompt_template) | ||
] | ||
|
||
# configure default hooks | ||
default_hooks = dict( | ||
# record the time of every iteration. | ||
timer=dict(type=IterTimerHook), | ||
# print log every 10 iterations. | ||
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), | ||
# enable the parameter scheduler. | ||
param_scheduler=dict(type=ParamSchedulerHook), | ||
# save checkpoint per `save_steps`. | ||
checkpoint=dict( | ||
type=CheckpointHook, | ||
by_epoch=False, | ||
interval=save_steps, | ||
max_keep_ckpts=save_total_limit), | ||
# set sampler seed in distributed evrionment. | ||
sampler_seed=dict(type=DistSamplerSeedHook), | ||
) | ||
|
||
# configure environment | ||
env_cfg = dict( | ||
# whether to enable cudnn benchmark | ||
cudnn_benchmark=False, | ||
# set multi process parameters | ||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | ||
# set distributed parameters | ||
dist_cfg=dict(backend='nccl'), | ||
) | ||
|
||
# set visualizer | ||
visualizer = None | ||
|
||
# set log level | ||
log_level = 'INFO' | ||
|
||
# load from which checkpoint | ||
load_from = None | ||
|
||
# whether to resume training from the loaded checkpoint | ||
resume = False | ||
|
||
# Defaults to use random seed and disable `deterministic` | ||
randomness = dict(seed=None, deterministic=False) | ||
|
||
# set log processor | ||
log_processor = dict(by_epoch=False) |
Oops, something went wrong.