Skip to content

The implementation of multimodal observability data root cause analysis approach Nezha in FSE 2023

License

Notifications You must be signed in to change notification settings

IntelligentDDS/Nezha

Repository files navigation

Nezha

This repository is the basic implementation of our publication in FSE'23 conference paper Nezha: Interpretable Fine-Grained Root Causes Analysis for Microservices on Multi-Modal Observability Data

Description

Nezha is an interpretable and fine-grained RCA approach that pinpoints root causes at the code region and resource type level by incorporative analysis of multimodal data. Nezha transforms heterogeneous multi-modal data into a homogeneous event representation and extracts event patterns by constructing and mining event graphs. The core idea of Nezha is to compare event patterns in the fault-free phase with those in the fault-suffering phase to localize root causes in an interpretable way.

Quick Start

Requirements

  • Python3.6 is recommended to run the anomaly detection. Otherwise, any python3 version should be fine.
  • Git is also needed.

Setup

Download Nezha first via git clone [email protected]:IntelligentDDS/Nezha.git

Enter Nezha content by cd Nezha

python3.6 -m pip install -r requirements.txt to install the dependency for Nezha

Running Nezha

OnlineBoutique at service level

python3.6 ./main.py --ns hipster --level service 

pattern_ranker.py:622: -------- hipster Fault numbuer : 56-------
pattern_ranker.py:623: --------AS@1 Result-------
pattern_ranker.py:624: 92.857143 %
pattern_ranker.py:625: --------AS@3 Result-------
pattern_ranker.py:626: 96.428571 %
pattern_ranker.py:627: --------AS@5 Result-------
pattern_ranker.py:628: 96.428571 %

OnlineBoutique at inner service level

python3.6 ./main.py --ns hipster --level inner

pattern_ranker.py:622: -------- hipster Fault numbuer : 56-------
pattern_ranker.py:623: --------AIS@1 Result-------
pattern_ranker.py:624: 92.857143 %
pattern_ranker.py:625: --------AIS@3 Result-------
pattern_ranker.py:626: 96.428571 %
pattern_ranker.py:627: --------AIS@5 Result-------
pattern_ranker.py:628: 96.428571 %

Trainticket at service level

python3.6 ./main.py --ns ts --level service

pattern_ranker.py:622: -------- ts Fault numbuer : 45-------
pattern_ranker.py:623: --------AS@1 Result-------
pattern_ranker.py:624: 86.666667 %
pattern_ranker.py:625: --------AS@3 Result-------
pattern_ranker.py:626: 97.777778 %
pattern_ranker.py:627: --------AS@5 Result-------
pattern_ranker.py:628: 97.777778 %

Trainticket at inner service level

python3.6 ./main.py --ns ts --level inner

pattern_ranker.py:622: -------- ts Fault numbuer : 45-------
pattern_ranker.py:623: --------AIS@1 Result-------
pattern_ranker.py:624: 86.666667 %
pattern_ranker.py:625: --------AIS@3 Result-------
pattern_ranker.py:626: 97.777778 %
pattern_ranker.py:627: --------AIS@5 Result-------
pattern_ranker.py:628: 97.777778 %

The details of service level results and inner-service level results will be printed and recorded in ./log

Dataset

2022-08-22 and 2022-08-23 is the fault-suffering dataset of OnlineBoutique

2023-01-29 and 2023-01-30 is the fault-suffering dataset of Trainticket

Fault-free data

construct_data is the data of fault-free phase

root_cause_hipster.json is the inner-servie level label of root causes in OnlineBoutique

root_cause_ts.json is the inner-servie level label of root causes in Trainticket

As an example,

    "checkoutservice": {
        "return": "Start charge card_Charge successfully",
        "exception": "Start charge card_Charge successfully",
        "network_delay": "NetworkP90(ms)",
        "cpu_contention": "CpuUsageRate(%)",
        "cpu_consumed": "CpuUsageRate(%)"
    },

The label of checkoutservice means that the label return fault of checkoutservice is core regions between log statement contains Start charge card and Charge successfully.

Fault-suffering Data

rca_data is the data of fault-suffering phase

2022-08-22-fault_list and 2022-08-23-fault_list is the servie level label of root causes in OnlineBoutique

2023-01-29-fault_list and 2022-01-30-fault_list is the servie level label of root causes in TrainTicket

Project Structure

.
├── LICENSE
├── README.md
├── construct_data
│   ├── 2022-08-22
│   │   ├── log
│   │   ├── metric
│   │   ├── trace
│   │   └── traceid
│   ├── 2022-08-23
│   ├── 2023-01-29
│   ├── 2023-01-30
│   ├── root_cause_hipster.json: label at inner-service level for OnlineBoutique
│   └── root_cause_ts.json: label at inner-service level for ts
├── rca_data
│   ├── 2022-08-22
│   │   ├── log
│   │   ├── metric
│   │   ├── trace
│   │   ├── traceid
│   │   └── 2022-08-22-fault_list.json: label at service level
│   ├── 2022-08-23
│   ├── 2023-01-29
│   └── 2023-01-30
├── log: RCA result
├── log_template: drain3 config 
├── alarm.py: generate alarm 
├── data_integrate.py: transform metric, log, and trace to event graph 
├── log_parsing.py: parsing logs
├── log.py: record logs
├── pattern_miner.py: mine patterns from event graph
├── pattern_ranker.py: rank suspicious patterns
├── main.py: running nezha
└── requirements.txt

Reference

Please cite our FSE'23 paper if you find this work is helpful.

@inproceedings{nezha,
  title={Nezha: Interpretable Fine-Grained Root Causes Analysis for Microservices on Multi-Modal Observability Data},
  author={Yu, Guangba and Chen, Pengfei and Li, Yufeng and Chen, Hongyang and Li, Xiaoyun and Zheng, Zibin},
  booktitle={ESEC/FSE 2023},
  pages={},
  year={2023},
  organization={ACM}
}

About

The implementation of multimodal observability data root cause analysis approach Nezha in FSE 2023

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages