Skip to content

Commit

Permalink
address comments
Browse files Browse the repository at this point in the history
  • Loading branch information
vtavana committed Sep 29, 2023
1 parent e104c48 commit 29246d1
Show file tree
Hide file tree
Showing 2 changed files with 85 additions and 2 deletions.
2 changes: 1 addition & 1 deletion dpnp/dpnp_iface_trigonometric.py
Original file line number Diff line number Diff line change
Expand Up @@ -860,7 +860,7 @@ def hypot(
Parameters `where`, `dtype` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise the function will be executed sequentially on CPU.
Input array data types are limited by supported DPNP :ref:`Data types`.
Input array data types are limited by supported real-valued data types.
Examples
--------
Expand Down
85 changes: 84 additions & 1 deletion tests/test_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,6 @@ def test_floor_divide(self, dtype, lhs, rhs):
"floor_divide", dtype, lhs, rhs, check_type=False
)

@pytest.mark.usefixtures("allow_fall_back_on_numpy")
@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_bool=True, no_complex=True)
)
Expand Down Expand Up @@ -966,6 +965,90 @@ def test_invalid_out(self, out):
assert_raises(TypeError, numpy.add, a.asnumpy(), 2, out)


class TestHypot:
@pytest.mark.parametrize("dtype", get_float_dtypes())
def test_hypot(self, dtype):
array1_data = numpy.arange(10)
array2_data = numpy.arange(5, 15)
out = numpy.empty(10, dtype=dtype)

# DPNP
dp_array1 = dpnp.array(array1_data, dtype=dtype)
dp_array2 = dpnp.array(array2_data, dtype=dtype)
dp_out = dpnp.array(out, dtype=dtype)
result = dpnp.hypot(dp_array1, dp_array2, out=dp_out)

# original
np_array1 = numpy.array(array1_data, dtype=dtype)
np_array2 = numpy.array(array2_data, dtype=dtype)
expected = numpy.hypot(np_array1, np_array2, out=out)

assert_allclose(expected, result)
assert_allclose(out, dp_out)

@pytest.mark.parametrize("dtype", get_float_dtypes())
def test_out_dtypes(self, dtype):
size = 10

np_array1 = numpy.arange(size, 2 * size, dtype=dtype)
np_array2 = numpy.arange(size, dtype=dtype)
np_out = numpy.empty(size, dtype=numpy.float32)
expected = numpy.hypot(np_array1, np_array2, out=np_out)

dp_array1 = dpnp.arange(size, 2 * size, dtype=dtype)
dp_array2 = dpnp.arange(size, dtype=dtype)

dp_out = dpnp.empty(size, dtype=dpnp.float32)
if dtype != dpnp.float32:
# dtype of out mismatches types of input arrays
with pytest.raises(TypeError):
dpnp.hypot(dp_array1, dp_array2, out=dp_out)

# allocate new out with expected type
dp_out = dpnp.empty(size, dtype=dtype)

result = dpnp.hypot(dp_array1, dp_array2, out=dp_out)

tol = numpy.finfo(numpy.float32).resolution
assert_allclose(expected, result, rtol=tol, atol=tol)

@pytest.mark.parametrize("dtype", get_float_dtypes())
def test_out_overlap(self, dtype):
size = 15
# DPNP
dp_a = dpnp.arange(2 * size, dtype=dtype)
dpnp.hypot(dp_a[size::], dp_a[::2], out=dp_a[:size:])

# original
np_a = numpy.arange(2 * size, dtype=dtype)
numpy.hypot(np_a[size::], np_a[::2], out=np_a[:size:])

tol = numpy.finfo(numpy.float32).resolution
assert_allclose(np_a, dp_a, rtol=tol, atol=tol)

@pytest.mark.parametrize(
"shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15, )", "(2,2)"]
)
def test_invalid_shape(self, shape):
dp_array1 = dpnp.arange(10)
dp_array2 = dpnp.arange(5, 15)
dp_out = dpnp.empty(shape)

with pytest.raises(ValueError):
dpnp.hypot(dp_array1, dp_array2, out=dp_out)

@pytest.mark.parametrize(
"out",
[4, (), [], (3, 7), [2, 4]],
ids=["4", "()", "[]", "(3, 7)", "[2, 4]"],
)
def test_invalid_out(self, out):
a = dpnp.arange(10)

assert_raises(TypeError, dpnp.hypot, a, 2, out)
assert_raises(TypeError, numpy.hypot, a.asnumpy(), 2, out)


class TestFmax:
@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_bool=True, no_complex=True, no_none=True)
Expand Down

0 comments on commit 29246d1

Please sign in to comment.