-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
33b24c2
commit 86b4b48
Showing
7 changed files
with
67 additions
and
59 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,23 +1,43 @@ | ||
bf_contingency_tab(data, x, y = NULL, counts = NULL, ratio = NULL, sampling.plan = "indepMulti", fixed.margin = "rows", prior.concentration = 1, caption = NULL, output = "null", k = 2, ...) | ||
bf_corr_test(data, x, y, bf.prior = 0.707, caption = NULL, output = "null", k = 2, ...) | ||
bf_expr(bf.df, k = 2, output = "null", caption = NULL, ...) | ||
bf_extractor(bf.object, ...) | ||
bf_meta(data, d = prior, norm, c(mean = 0, sd = 0.3), tau = prior, invgamma, c(shape = 1, scale = 0.15), k = 2, output = "null", caption = NULL, messages = TRUE, ...) | ||
bf_oneway_anova(data, x, y, bf.prior = 0.707, caption = NULL, output = "null", paired = FALSE, k = 2, ...) | ||
bf_ttest(data, x, y = NULL, test.value = 0, paired = FALSE, bf.prior = 0.707, caption = NULL, output = "null", k = 2, ...) | ||
corr_objects(data, ci = FALSE, corr.method = "pearson", p.adjust.method = "none", beta = 0.1, k = 2, ...) | ||
expr_anova_bayes(data, x, y, paired = FALSE, bf.prior = 0.707, k = 2, ...) | ||
expr_anova_nonparametric(data, x, y, paired = FALSE, conf.type = "perc", conf.level = 0.95, k = 2, nboot = 100, stat.title = NULL, messages = TRUE, ...) | ||
expr_anova_parametric(data, x, y, paired = FALSE, effsize.type = "unbiased", partial = TRUE, conf.level = 0.95, nboot = 100, var.equal = FALSE, sphericity.correction = TRUE, k = 2, stat.title = NULL, messages = TRUE, ...) | ||
expr_anova_robust(data, x, y, paired = FALSE, tr = 0.1, nboot = 100, conf.level = 0.95, conf.type = "norm", k = 2, stat.title = NULL, messages = TRUE, ...) | ||
expr_contingency_tab(data, x, y = NULL, counts = NULL, ratio = NULL, nboot = 100, paired = FALSE, stat.title = NULL, legend.title = NULL, conf.level = 0.95, conf.type = "norm", bias.correct = TRUE, k = 2, messages = TRUE, ...) | ||
expr_corr_test(data, x, y, nboot = 100, beta = 0.1, type = "pearson", bf.prior = 0.707, conf.level = 0.95, conf.type = "norm", k = 2, stat.title = NULL, messages = TRUE, ...) | ||
expr_meta_bayes(data, d = prior, norm, c(mean = 0, sd = 0.3), tau = prior, invgamma, c(shape = 1, scale = 0.15), k = 2, messages = TRUE, ...) | ||
expr_meta_parametric(data, conf.level = 0.95, k = 2, messages = FALSE, output = "subtitle", caption = NULL, ...) | ||
expr_meta_robust(data, random = "mixture", k = 2, messages = FALSE, ...) | ||
# API for statsExpressions package | ||
|
||
## Exported functions | ||
|
||
expr_anova_bayes(data, x, y, paired = FALSE, bf.prior = 0.707, k = 2L, ...) | ||
expr_anova_nonparametric(data, x, y, paired = FALSE, conf.type = "perc", conf.level = 0.95, k = 2L, nboot = 100L, stat.title = NULL, ...) | ||
expr_anova_parametric(data, x, y, paired = FALSE, effsize.type = "unbiased", partial = TRUE, conf.level = 0.95, var.equal = FALSE, sphericity.correction = TRUE, k = 2L, stat.title = NULL, ...) | ||
expr_anova_robust(data, x, y, paired = FALSE, tr = 0.1, nboot = 100, conf.level = 0.95, k = 2L, stat.title = NULL, ...) | ||
expr_contingency_tab(data, x, y = NULL, counts = NULL, ratio = NULL, nboot = 100, paired = FALSE, stat.title = NULL, conf.level = 0.95, conf.type = "norm", bias.correct = TRUE, k = 2L, ...) | ||
expr_corr_test(data, x, y, beta = 0.1, type = "parametric", bf.prior = 0.707, conf.level = 0.95, k = 2L, stat.title = NULL, ...) | ||
expr_meta_bayes(data, d = prior("norm", c(mean = 0, sd = 0.3)), tau = prior("invgamma", c(shape = 1, scale = 0.15)), k = 2, messages = TRUE, ...) | ||
expr_meta_parametric(data, conf.level = 0.95, k = 2L, output = "subtitle", caption = NULL, messages = TRUE, ...) | ||
expr_meta_robust(data, random = "mixture", k = 2, messages = TRUE, ...) | ||
expr_onesample_proptest(data, x, y = NULL, counts = NULL, ratio = NULL, nboot = 100, paired = FALSE, stat.title = NULL, conf.level = 0.95, conf.type = "norm", bias.correct = TRUE, k = 2L, ...) | ||
expr_t_bayes(data, x, y, bf.prior = 0.707, paired = FALSE, k = 2, ...) | ||
expr_t_nonparametric(data, x, y, paired = FALSE, k = 2, conf.level = 0.95, conf.type = "norm", nboot = 100, stat.title = NULL, messages = TRUE, ...) | ||
expr_t_onesample(data, x, type = "parametric", test.value = 0, bf.prior = 0.707, robust.estimator = "onestep", effsize.type = "g", effsize.noncentral = TRUE, conf.level = 0.95, conf.type = "norm", nboot = 100, k = 2, stat.title = NULL, messages = TRUE, ...) | ||
expr_t_parametric(data, x, y, paired = FALSE, effsize.type = "g", effsize.noncentral = TRUE, conf.level = 0.95, var.equal = FALSE, k = 2, stat.title = NULL, ...) | ||
expr_t_robust(data, x, y, tr = 0.1, paired = FALSE, nboot = 100, conf.level = 0.95, conf.type = "norm", k = 2, stat.title = NULL, messages = TRUE, ...) | ||
expr_template(no.parameters, stat.title = NULL, statistic.text, stats.df, effsize.text, effsize.df, n, conf.level = 0.95, k = 2, k.parameter = 0, k.parameter2 = 0, n.text = NULL, ...) | ||
expr_t_nonparametric(data, x, y, paired = FALSE, k = 2L, conf.level = 0.95, conf.type = "norm", nboot = 100, stat.title = NULL, ...) | ||
expr_t_onesample(data, x, type = "parametric", test.value = 0, bf.prior = 0.707, robust.estimator = "onestep", effsize.type = "g", conf.level = 0.95, conf.type = "norm", nboot = 100, k = 2L, stat.title = NULL, ...) | ||
expr_t_parametric(data, x, y, paired = FALSE, effsize.type = "g", conf.level = 0.95, var.equal = FALSE, k = 2, stat.title = NULL, ...) | ||
expr_t_robust(data, x, y, tr = 0.1, paired = FALSE, conf.level = 0.95, nboot = 100, k = 2L, stat.title = NULL, ...) | ||
expr_template(no.parameters, stat.title = NULL, statistic.text, stats.df, effsize.text, effsize.df, n, conf.level = 0.95, k = 2L, k.parameter = 0L, k.parameter2 = 0L, n.text = NULL, ...) | ||
|
||
## Reexported objects | ||
|
||
::%$% | ||
zeallot::%<-% | ||
::%<>% | ||
::%>% | ||
rlang::%|% | ||
rlang::%||% | ||
rlang:::= | ||
tibble::as_tibble | ||
tidyBF::bf_contingency_tab | ||
tidyBF::bf_corr_test | ||
tidyBF::bf_meta | ||
tidyBF::bf_oneway_anova | ||
tidyBF::bf_ttest | ||
correlation::correlation | ||
ipmisc::long_to_wide_converter | ||
metaBMA::prior | ||
ipmisc::set_cwd | ||
ipmisc::signif_column | ||
ipmisc::specify_decimal_p | ||
tibble::tibble |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
86b4b48
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
data-raw/movies_wide_long.R:11:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:12:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:16:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:18:1: style: Lines should not be more than 100 characters.
data-raw/Titanic_full.R:16:10: warning: Avoid 1:nrow(...) expressions, use seq_len.
R/helpers_anova_expressions.R:84:1: style: functions should have cyclomatic complexity of less than 15, this has 18.
86b4b48
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
data-raw/movies_wide_long.R:11:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:12:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:16:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:18:1: style: Lines should not be more than 100 characters.
data-raw/Titanic_full.R:16:10: warning: Avoid 1:nrow(...) expressions, use seq_len.
R/helpers_anova_expressions.R:84:1: style: functions should have cyclomatic complexity of less than 15, this has 18.
86b4b48
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
data-raw/movies_wide_long.R:11:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:12:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:16:1: style: Lines should not be more than 100 characters.
data-raw/movies_wide_long.R:18:1: style: Lines should not be more than 100 characters.
data-raw/Titanic_full.R:16:10: warning: Avoid 1:nrow(...) expressions, use seq_len.
R/helpers_anova_expressions.R:84:1: style: functions should have cyclomatic complexity of less than 15, this has 18.