Skip to content

Commit

Permalink
more movement lemmas for WildCat/Equiv.v
Browse files Browse the repository at this point in the history
Signed-off-by: Ali Caglayan <[email protected]>

<!-- ps-id: c7e4479f-8f4c-4a07-bf56-9d2c86250c31 -->
  • Loading branch information
Alizter committed Apr 12, 2024
1 parent 202f97a commit 506f4fd
Show file tree
Hide file tree
Showing 2 changed files with 77 additions and 19 deletions.
22 changes: 11 additions & 11 deletions theories/WildCat/DisplayedEquiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -338,24 +338,24 @@ Defined.
(** Some lemmas for moving equivalences around. Naming based on EquivGroupoids.v. *)

Definition dcate_moveR_eM {A} {D : A -> Type} `{DHasEquivs A D}
{a b c : A} {e : b $<~> a} {f : b $<~> c} {g : a $<~> c}
{p : cate_fun g $== f $o e^-1$} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DCatEquiv f b' c') (g' : DCatEquiv g a' c')
(p' : DGpdHom p (dcate_fun g') (dcate_fun f' $o' e'^-1$'))
: DGpdHom (cate_moveR_eM e f g p) (dcate_fun g' $o' e') (dcate_fun f').
{a b c : A} {e : b $<~> a} {f : a $-> c} {g : b $-> c}
{p : f $== g $o e^-1$} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DHom f a' c') (g' : DHom g b' c')
(p' : DGpdHom p f' (g' $o' e'^-1$'))
: DGpdHom (cate_moveR_eM e f g p) (f' $o' e') g'.
Proof.
apply (dcate_epic_equiv e'^-1$').
exact (dcompose_hh_V _ _ $@' p').
Defined.

Definition dcate_moveR_Ve {A} {D : A -> Type} `{DHasEquivs A D}
{a b c : A} {e : b $<~> a} {f : b $<~> c} {g : c $<~> a}
{p : cate_fun e $== g $o f} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DCatEquiv f b' c') (g' : DCatEquiv g c' a')
(p' : DGpdHom p (dcate_fun e') (dcate_fun g' $o' f'))
: DGpdHom (cate_moveR_Ve e f g p) (dcate_fun g'^-1$' $o' e') (dcate_fun f').
{a b c : A} {e : b $<~> c} {f : a $-> c} {g : a $-> b}
{p : f $== e $o g} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' c') (f' : DHom f a' c') (g' : DHom g a' b')
(p' : DGpdHom p f' (dcate_fun e' $o' g'))
: DGpdHom (cate_moveR_Ve e f g p) (dcate_fun e'^-1$' $o' f') g'.
Proof.
apply (dcate_monic_equiv g').
apply (dcate_monic_equiv e').
exact (dcompose_h_Vh _ _ $@' p').
Defined.

Expand Down
74 changes: 66 additions & 8 deletions theories/WildCat/Equiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -282,21 +282,79 @@ Proof.
exact (p $@R _).
Defined.

(** Some lemmas for moving equivalences around. Naming based on EquivGroupoids.v. More could be added. *)
(** ** Movement Lemmas *)

Definition cate_moveR_eM {A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : b $<~> c) (g : a $<~> c)
(p : cate_fun g $== f $o e^-1$)
: g $o e $== f.
(** These lemmas can be used to move equivalences around in an equation. *)

Definition cate_moveL_eM {A} `{HasEquivs A} {a b c : A}
(e : a $<~> b) (f : a $-> c) (g : b $-> c)
(p : f $o e^-1$ $== g)
: f $== g $o e.
Proof.
apply (cate_epic_equiv e^-1$).
exact (p $@ (compose_hh_V _ _)^$).
Defined.

Definition cate_moveR_eM {A} `{HasEquivs A} {a b c : A}
(e : b $<~> a) (f : a $-> c) (g : b $-> c)
(p : f $== g $o e^-1$)
: f $o e $== g.
Proof.
apply (cate_epic_equiv e^-1$).
exact (compose_hh_V _ _ $@ p).
Defined.

Definition cate_moveR_Ve {A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : b $<~> c) (g : c $<~> a)
(p : cate_fun e $== g $o f)
: g^-1$ $o e $== f.
Definition cate_moveL_Me {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> c) (g : a $-> b)
(p : e^-1$ $o f $== g)
: f $== e $o g.
Proof.
apply (cate_monic_equiv e^-1$).
exact (p $@ (compose_V_hh _ _)^$).
Defined.

Definition cate_moveR_Me {A} `{HasEquivs A} {a b c : A}
(e : c $<~> b) (f : a $-> c) (g : a $-> b)
(p : f $== e^-1$ $o g)
: e $o f $== g.
Proof.
apply (cate_monic_equiv e^-1$).
exact (compose_V_hh _ _ $@ p).
Defined.

Definition cate_moveL_eV {A} `{HasEquivs A} {a b c : A}
(e : a $<~> b) (f : b $-> c) (g : a $-> c)
(p : f $o e $== g)
: f $== g $o e^-1$.
Proof.
apply (cate_monic_equiv g).
apply (cate_epic_equiv e).
exact (p $@ (compose_hV_h _ _)^$).
Defined.

Definition cate_moveR_eV {A} `{HasEquivs A} {a b c : A}
(e : b $<~> a) (f : b $-> c) (g : a $-> c)
(p : f $== g $o e)
: f $o e^-1$ $== g.
Proof.
apply (cate_epic_equiv e).
exact (compose_hV_h _ _ $@ p).
Defined.

Definition cate_moveL_Ve {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> b) (g : a $-> c)
(p : e $o f $== g)
: f $== e^-1$ $o g.
Proof.
apply (cate_monic_equiv e).
exact (p $@ (compose_h_Vh _ _)^$).
Defined.

Definition cate_moveR_Ve {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> c) (g : a $-> b)
(p : f $== e $o g)
: e^-1$ $o f $== g.
Proof.
apply (cate_monic_equiv e).
exact (compose_h_Vh _ _ $@ p).
Defined.

Expand Down

0 comments on commit 506f4fd

Please sign in to comment.