-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
240196e
commit 9676843
Showing
2 changed files
with
185 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"The autoreload extension is already loaded. To reload it, use:\n", | ||
" %reload_ext autoreload\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# add autoreload\n", | ||
"%load_ext autoreload\n", | ||
"%autoreload 2" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"sys.path.append(\"/code/zoology/zoology/data\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor(583) tensor(-100)\n", | ||
"tensor(5999) tensor(-100)\n", | ||
"tensor(1962) tensor(-100)\n", | ||
"tensor(5773) tensor(-100)\n", | ||
"tensor(1958) tensor(-100)\n", | ||
"tensor(6954) tensor(-100)\n", | ||
"tensor(3194) tensor(-100)\n", | ||
"tensor(6629) tensor(-100)\n", | ||
"tensor(1958) tensor(6954)\n", | ||
"tensor(780) tensor(-100)\n", | ||
"tensor(6806) tensor(-100)\n", | ||
"tensor(143) tensor(-100)\n", | ||
"tensor(1729) tensor(-100)\n", | ||
"tensor(6368) tensor(-100)\n", | ||
"tensor(6014) tensor(-100)\n", | ||
"tensor(4482) tensor(-100)\n", | ||
"tensor(2079) tensor(-100)\n", | ||
"tensor(305) tensor(-100)\n", | ||
"tensor(3111) tensor(-100)\n", | ||
"tensor(253) tensor(-100)\n", | ||
"tensor(4161) tensor(-100)\n", | ||
"tensor(516) tensor(-100)\n", | ||
"tensor(1939) tensor(-100)\n", | ||
"tensor(4073) tensor(-100)\n", | ||
"tensor(1458) tensor(-100)\n", | ||
"tensor(5804) tensor(-100)\n", | ||
"tensor(3292) tensor(-100)\n", | ||
"tensor(1369) tensor(-100)\n", | ||
"tensor(3024) tensor(-100)\n", | ||
"tensor(7556) tensor(-100)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from associative_recall import associative_recall\n", | ||
"data = associative_recall()\n", | ||
"x= data.train_inputs[0]\n", | ||
"y= data.train_labels[0]\n", | ||
"\n", | ||
"for i, (_x, _y) in enumerate(zip(x, y)):\n", | ||
" if i == 30:\n", | ||
" break\n", | ||
" print(_x, _y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"tensor(583) tensor(-100)\n", | ||
"tensor(4898) tensor(-100)\n", | ||
"tensor(1962) tensor(-100)\n", | ||
"tensor(4671) tensor(-100)\n", | ||
"tensor(1958) tensor(-100)\n", | ||
"tensor(7947) tensor(-100)\n", | ||
"tensor(3194) tensor(-100)\n", | ||
"tensor(6084) tensor(-100)\n", | ||
"tensor(1962) tensor(4671)\n", | ||
"tensor(5096) tensor(-100)\n", | ||
"tensor(5725) tensor(-100)\n", | ||
"tensor(6249) tensor(-100)\n", | ||
"tensor(6204) tensor(-100)\n", | ||
"tensor(2841) tensor(-100)\n", | ||
"tensor(3194) tensor(6084)\n", | ||
"tensor(401) tensor(-100)\n", | ||
"tensor(6296) tensor(-100)\n", | ||
"tensor(881) tensor(-100)\n", | ||
"tensor(7629) tensor(-100)\n", | ||
"tensor(2311) tensor(-100)\n", | ||
"tensor(3502) tensor(-100)\n", | ||
"tensor(7825) tensor(-100)\n", | ||
"tensor(3207) tensor(-100)\n", | ||
"tensor(910) tensor(-100)\n", | ||
"tensor(8025) tensor(-100)\n", | ||
"tensor(1454) tensor(-100)\n", | ||
"tensor(1236) tensor(-100)\n", | ||
"tensor(3014) tensor(-100)\n", | ||
"tensor(5794) tensor(-100)\n", | ||
"tensor(6338) tensor(-100)\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"from associative_recall import multiquery_ar\n", | ||
"data = multiquery_ar()\n", | ||
"x= data.train_inputs[0]\n", | ||
"y= data.train_labels[0]\n", | ||
"\n", | ||
"for i, (_x, _y) in enumerate(zip(x, y)):\n", | ||
" if i == 30:\n", | ||
" break\n", | ||
" print(_x, _y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.18" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters