Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[0] reinterpret_i32 output mismatch when disable log print #27

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions kernels/gaudi2/reinterpret_fwd_i32.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
/**********************************************************************
Copyright (c) 2024 Habana Labs.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************/

#include "reinterpret_fwd_i32.h"
53 changes: 53 additions & 0 deletions kernels/include/reinterpret_fwd_i32.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#include "kernel_config.h"

void main(const tensor input, tensor output) {
printf("Hello from Reinterpret kernel\n");
const int dim0 = 0;
const int dim1 = 1;
const int dim2 = 2;
const int dim3 = 3;
const int dim4 = 4;

const int5 index_space_start = get_index_space_offset();
const int5 index_space_end = get_index_space_size() + index_space_start;

const int dim0Step = 64; // we consume 64 float elements at a time (float64)
const int dim0Start = index_space_start[dim0] * dim0Step;
const int dim0End = index_space_end[dim0] * dim0Step;

const int dim1Step = 1;
const int dim1Start = index_space_start[dim1] * dim1Step;
const int dim1End = index_space_end[dim1] * dim1Step;

const int dim2Step = 1;
const int dim2Start = index_space_start[dim2] * dim2Step;
const int dim2End = index_space_end[dim2] * dim2Step;

const int dim3Step = 1;
const int dim3Start = index_space_start[dim3] * dim3Step;
const int dim3End = index_space_end[dim3] * dim3Step;

const int dim4Step = 1;
const int dim4Start = index_space_start[dim4] * dim4Step;
const int dim4End = index_space_end[dim4] * dim4Step;

int5 coords = {0, 0, 0, 0, 0};

for (int d0 = dim0Start; d0 < dim0End; d0 += dim0Step) {
coords[dim0] = d0;
for (int d1 = dim1Start; d1 < dim1End; d1 += dim1Step) {
coords[dim1] = d1;
for (int d2 = dim2Start; d2 < dim2End; d2 += dim2Step) {
coords[dim2] = d2;
for (int d3 = dim3Start; d3 < dim3End; d3 += dim3Step) {
coords[dim3] = d3;
for (int d4 = dim4Start; d4 < dim4End; d4 += dim4Step) {
coords[dim4] = d4;
// read the bytes as i32 and store in the output tensor. It's as easy as that
v_i32_st_tnsr(coords, output, v_i32_ld_tnsr_b(coords, input));
}
}
}
}
}
}
58 changes: 58 additions & 0 deletions reinterpret_test/hpu_custom_reinterpret.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
#include "hpu_custom_op.h"

#include <torch/extension.h>

#include <synapse_common_types.hpp>


bool register_custom_reinterpret() {
// inputs desc
habana::custom_op::InputDesc input_a_desc {
habana::custom_op::input_type::TENSOR, 0
};
std::vector<habana::custom_op::InputDesc> inputs_desc { input_a_desc };

auto output_size_lambda = [](const at::Stack& inputs) -> std::vector<int64_t> {
return inputs[0].toTensor().sizes().vec(); // Output shape is same as input tensor shape
};

habana::custom_op::OutputDesc output_desc{
0, c10::ScalarType::Int, output_size_lambda}; // Output dtype will be set in execute function
std::vector<habana::custom_op::OutputDesc> outputs_desc{
output_desc};
// acctual register
REGISTER_CUSTOM_OP_ATTRIBUTES(
"custom_op::reinterpret_float", //schema name
"reinterpret_fwd_i32", // guid
inputs_desc,
outputs_desc,
nullptr);
std::cout << "cpp registered custom_op::reinterpret_float\n";
return true;
}

at::Tensor custom_reinterpret_execute(torch::Tensor input_a)
{
// Registering the custom op, need to be called only once
static bool registered = register_custom_reinterpret();
TORCH_CHECK(registered, "custom_reinterpret kernel not registered" );
std::vector<c10::IValue> inputs{input_a};

// Get custom op descriptor from registry
auto op_desc = habana::custom_op::HabanaCustomOpDescriptor::getCustomOpDescriptor("custom_op::reinterpret_float");


// Actual call for op execution
std::vector<at::Tensor> output = op_desc.execute(inputs);

return output[0];
}

TORCH_LIBRARY(custom_op, m) {
m.def("reinterpret_float(Tensor self) -> Tensor");
}
TORCH_LIBRARY_IMPL(custom_op, HPU, m) {
m.impl("reinterpret_float", custom_reinterpret_execute);
}


112 changes: 112 additions & 0 deletions reinterpret_test/kernel_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
#!/bin/env python3
import pathlib
import torch, logging
import os
file_path = pathlib.Path(__file__).parent.resolve()
os.environ["GC_KERNEL_PATH"] += f":{file_path}/libcustom_tpc_perf_lib.so"

from mpi4py import MPI
os.environ['MASTER_ADDR'] = 'localhost' # server with rank=0 (master)
os.environ['MASTER_PORT'] = '12355'
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
world_size = comm.Get_size()
os.environ['RANK'] = f"{rank}"
os.environ['WORLD_SIZE'] = f"{world_size}"
os.environ['LOCAL_RANK'] = f"{rank}"

os.environ["PT_HPU_LAZY_MODE"] = "1"


print(f"world_size {world_size}")
print(f"rank {rank}")
import habana_frameworks.torch.core as htcore
import habana_frameworks.torch as htorch

class TensorChecker:
def __init__(self, gold=None, device=None):
self.device = device
self.aggregate_check = torch.empty(size=(0,))
self.gold = gold

@property
def gold(self):
return self._gold

@gold.setter
def gold(self, value):
self._gold = value if value is not None else torch.empty(size=(0,))
self.init_aggregate_check()

def init_aggregate_check(self):
self.aggregate_check = torch.ones_like(self._gold, dtype=torch.bool, device=self.device)

def check(self, answer):
answer = answer.to(torch.device(self.device))
self._gold = self._gold.to(torch.device(self.device))
self.aggregate_check &= torch.eq(self._gold, answer)

def passed(self):
return torch.all(self.aggregate_check)

def failed(self):
return not self.passed()

def log(msg):
print(f"Rank{rank}: {msg}", flush=True)

def run(input_values):
tin = torch.tensor(input_values, dtype=torch.float32, device="hpu")
# tin = tin.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
# print(f"tin.shape = {tin.shape}")
kernel_path = f"{file_path}/hpu_custom_reinterpret.cpython-310-x86_64-linux-gnu.so"
torch.ops.load_library(kernel_path)

# If you un-comment this print:
# it will start working, but resutls are incorrect particularly, when running on multiple gaudis
# log(tin)

tout = torch.ops.custom_op.reinterpret_float(tin)

# If you uncomment this print:
# All the answers returned are zero

# If you uncomment both prints, then we will pass,
# though we have seen some data mismatches on rare occasions
# log(tout)
# tout = tout.squeeze(0).squeeze(0).squeeze(0).squeeze(0)
# print(f"tout.shape = {tout.shape}")

return tout



def print_tensor_as_hex(tensor):
return [f"0x{value.item():08x}" for value in tensor.view(-1)]
# print(f"0x{value.item():08x}")


if __name__ == '__main__':
iterations = 10

# We will convert 1.0, 2,0 and 3.0 from float to raw binary value (reinterpreted_cast)
# And the expected values are listed in the gold tensor below
input_values = [1.0, 2.0, 3.0]
# 1.0 2.0 3.0
gold = torch.tensor([0x3f800000, 0x40000000, 0x40400000], dtype=torch.int32)
checker = TensorChecker(gold, device="cpu")
answers = []
for _ in range(iterations):
ans = run(input_values)
checker.check(ans)
# answers.append(ans)

print("Answers:")
for i, v in enumerate(answers):
log(f" Iteration {i} : {print_tensor_as_hex(v)}")


if checker.failed():
log(f"Mismatches detected on data during local checking on rank {rank} ")
else:
log(f"No mismatches detected on rank {rank}")
26 changes: 26 additions & 0 deletions reinterpret_test/setup.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
###############################################################################
# Copyright (C) 2020-2021 Habana Labs, Ltd. an Intel Company
###############################################################################

from setuptools import setup
from torch.utils import cpp_extension
from habana_frameworks.torch.utils.lib_utils import get_include_dir, get_lib_dir
import os
import pybind11

torch_include_dir = get_include_dir()
torch_lib_dir = get_lib_dir()
habana_modules_directory = "/usr/include/habanalabs"
pybind_include_path = pybind11.get_include()

setup(name='hpu_custom_reinterpret',
ext_modules=[cpp_extension.CppExtension('hpu_custom_reinterpret', ['hpu_custom_reinterpret.cpp'],
#language='c++', extra_compile_args=["-std=c++17"],
libraries=['habana_pytorch_plugin'],
library_dirs=[torch_lib_dir])],
include_dirs=[torch_include_dir,
habana_modules_directory,
pybind_include_path,
],
cmdclass={'build_ext': cpp_extension.BuildExtension})

10 changes: 10 additions & 0 deletions src/entry_points.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVE
#include "add_f32_gaudi2.hpp"
#include "relu_all_gaudi2.hpp"
#include "user_lut_gaudi2.hpp"
#include "reinterpret_fwd_i32.hpp"

#include "entry_points.hpp"
#include <stdio.h>
Expand Down Expand Up @@ -141,6 +142,8 @@ tpc_lib_api::GlueCodeReturn GetKernelGuids( _IN_ tpc_lib_api::DeviceId
ReluBwdBF16g2Instance.GetKernelName(guids[GAUDI2_KERNEL_RELU_BWD_BF16].name, ReluAllGaudi2::relu_bwd_bf16);
UserLutGaudi2 userLutInstance;
userLutInstance.GetKernelName(guids[GAUDI2_KERNEL_USER_LUT].name);
ReinterpretFwdI32 ReinterpretFwdI32Instance;
ReinterpretFwdI32Instance.GetKernelName(guids[GAUDI2_KERNEL_REINTERPRET_FWD_I32].name);
}

if (kernelCount != nullptr)
Expand Down Expand Up @@ -441,6 +444,13 @@ InstantiateTpcKernel(_IN_ tpc_lib_api::HabanaKernelParams* params,
return userLutInstance.GetGcDefinitions(params,instance);
}

ReinterpretFwdI32 ReinterpretFwdI32Instance;
ReinterpretFwdI32Instance.GetKernelName(kernelName);
if (strcmp(params->guid.name, kernelName) == 0)
{
return ReinterpretFwdI32Instance.GetGcDefinitions(params,instance);
}

return tpc_lib_api::GLUE_NODE_NOT_FOUND;
}

Expand Down
1 change: 1 addition & 0 deletions src/entry_points.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ typedef enum
GAUDI2_KERNEL_RELU_FWD_BF16,
GAUDI2_KERNEL_RELU_BWD_BF16,
GAUDI2_KERNEL_USER_LUT,
GAUDI2_KERNEL_REINTERPRET_FWD_I32,

GAUDI2_KERNEL_MAX_EXAMPLE_KERNEL

Expand Down
83 changes: 83 additions & 0 deletions src/gaudi2_src/reinterpret_fwd_i32.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
#include <iostream>
#include <cstring>
#include "reinterpret_fwd_i32.hpp" // Include the header file for your kernel

extern unsigned char _binary___reinterpret_fwd_i32_o_start;
extern unsigned char _binary___reinterpret_fwd_i32_o_end;

tpc_lib_api::GlueCodeReturn ReinterpretFwdI32::GetKernelName(
char kernelName [tpc_lib_api::MAX_NODE_NAME])
{
strcpy(kernelName, "reinterpret_fwd_i32");
return tpc_lib_api::GLUE_SUCCESS;
}


tpc_lib_api::GlueCodeReturn ReinterpretFwdI32::GetGcDefinitions(
tpc_lib_api::HabanaKernelParams* in_defs,
tpc_lib_api::HabanaKernelInstantiation* out_defs)
{
// Validate correct amount of input tensors
if (in_defs->inputTensorNr != 1)
{
return tpc_lib_api::GLUE_INCOMPATIBLE_INPUT_COUNT;
}
// Validate correct amount of output tensors
if (in_defs->outputTensorNr != 1)
{
return tpc_lib_api::GLUE_INCOMPATIBLE_OUTPUT_COUNT;
}
// Validate input data type is float and output data type is int
if (in_defs->inputTensors[0].geometry.dataType != tpc_lib_api::DATA_F32 ||
in_defs->outputTensors[0].geometry.dataType != tpc_lib_api::DATA_I32)
{
return tpc_lib_api::GLUE_INCOMPATIBLE_DATA_TYPE;
}

// Define index space geometry based on the output tensor dimensions
// Assuming the kernel processes the tensor in 64-element chunks
int elementsInVec = 64;
uint64_t outputSizes[gcapi::MAX_TENSOR_DIM] = {0};
memcpy(outputSizes, in_defs->inputTensors[0].geometry.maxSizes, sizeof(outputSizes));

// Round up to elementsInVec and divide by elementsInVec
unsigned depthIndex = (outputSizes[0]) / elementsInVec;
out_defs->indexSpaceRank = 5;
out_defs->indexSpaceGeometry[0] = depthIndex;
out_defs->indexSpaceGeometry[1] = outputSizes[1];
out_defs->indexSpaceGeometry[2] = outputSizes[2];
out_defs->indexSpaceGeometry[3] = outputSizes[3];
out_defs->indexSpaceGeometry[4] = outputSizes[4];

// Define index space mapping for input and output tensors
// The mapping is direct since this kernel does not change the data layout
for (uint32_t i = 0; i < out_defs->indexSpaceRank; ++i)
{
out_defs->inputTensorAccessPattern[0].mapping[i].indexSpaceDim = i;
out_defs->inputTensorAccessPattern[0].mapping[i].a = 1;
out_defs->inputTensorAccessPattern[0].mapping[i].start_b = 0;
out_defs->inputTensorAccessPattern[0].mapping[i].end_b = 0;

out_defs->outputTensorAccessPattern[0].mapping[i].indexSpaceDim = i;
out_defs->outputTensorAccessPattern[0].mapping[i].a = 1;
out_defs->outputTensorAccessPattern[0].mapping[i].start_b = 0;
out_defs->outputTensorAccessPattern[0].mapping[i].end_b = 0;
}
// Load the ISA binary into the descriptor
unsigned IsaSize = (&_binary___reinterpret_fwd_i32_o_end - &_binary___reinterpret_fwd_i32_o_start);
unsigned givenBinarySize = out_defs->kernel.elfSize;
out_defs->kernel.elfSize = IsaSize;

if (givenBinarySize >= IsaSize)
{
memcpy(out_defs->kernel.kernelElf,
&_binary___reinterpret_fwd_i32_o_start,
IsaSize);
}
else
{
return tpc_lib_api::GLUE_INSUFFICIENT_ELF_BUFFER;
}

return tpc_lib_api::GLUE_SUCCESS;
}
Loading