Skip to content

Commit

Permalink
Merge pull request #23 from Yu-AnChen/master
Browse files Browse the repository at this point in the history
Compress output image files
  • Loading branch information
clarenceyapp authored Sep 5, 2023
2 parents cfdf9e1 + b391eb4 commit 8eec1cd
Show file tree
Hide file tree
Showing 10 changed files with 381 additions and 179 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ jobs:
cd ~/data
rm -rf large
mkdir large
docker run -v "$PWD":/data s3seg:test-large /bin/bash -c "cd /data; \
docker run -v "$PWD":/data -u root s3seg:test-large /bin/bash -c "cd /data; \
python /app/S3segmenter.py --imagePath $IMG --stackProbPath $PMAP --outputPath large"
# If the action is successful, the output will be available as a downloadable artifact
Expand Down
40 changes: 40 additions & 0 deletions large/.dev/create-docker-env.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Note for creating/building docker image for palom ([reference](https://micromamba-docker.readthedocs.io/en/latest/advanced_usage.html#advanced-usages))

1. Create reference env on micromamba's docker image

```bash
# Run bash in micromamba docker image with bind volume for writing out env
# lock file
docker run -it --rm --platform linux/amd64 -v "$(pwd)":/data mambaorg/micromamba:1.4.9 bash
```

```bash
# Manually install known deps in `palom` env
micromamba create -y -n palom python=3.10 "scikit-image<0.20" scikit-learn "zarr<2.15" tifffile imagecodecs matplotlib tqdm scipy dask numpy loguru=0.5.3 "ome-types>0.3" "pydantic<2" pint napari-lazy-openslide yamale fire termcolor dask-image -c conda-forge
# Use `pip install --dry-run` to verify, would only expect to see `opencv`,
# and `palom`
micromamba activate palom
python -m pip install --dry-run palom
# output: Would install opencv-python-4.8.0.76 palom-2023.8.1
# if the above checks out, export micromamba env as lock file
micromamba env export --explicit > /data/docker-env.lock
# pip install the rest of the packages, note: use `opencv-python-headless`
# instead of `opencv-python`
python -m pip install --no-deps palom==2023.8.1 opencv-python-headless==4.8.0.76
# Test the environment
python -c "import cv2; cv2.blur"
```

1. When building the docker image, specify `--platform linux/amd64`

```bash
docker build --platform linux/amd64 --tag test-s3seg-large .
```
29 changes: 15 additions & 14 deletions large/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,17 +1,18 @@
FROM python:3.10
FROM mambaorg/micromamba:1.4.9

RUN python -m pip install \
palom>=2022.9.1 \
dask[dataframe] \
dask-image \
ome_types
RUN python -m pip uninstall opencv-python -y
RUN python -m pip install opencv-python-headless
COPY --chown=$MAMBA_USER:$MAMBA_USER docker-env.lock /tmp/docker-env.lock
RUN micromamba install --name base --yes --file /tmp/docker-env.lock \
&& micromamba clean --trash -aflp --yes

COPY S3segmenter.py ./app/S3segmenter.py
COPY save_tifffile_pyramid.py ./app/save_tifffile_pyramid.py
COPY watershed.py ./app/watershed.py
COPY s3seg_qc.py ./app/s3seg_qc.py
COPY s3seg_util.py ./app/s3seg_util.py
COPY ignored_args.py ./app/ignored_args.py
# pip install packages that are not available/problematic on conda-forge
RUN /opt/conda/bin/python -m pip install \
--no-deps \
opencv-python-headless==4.8.0.76 \
palom==2023.8.1 \
&& /opt/conda/bin/python -m pip cache purge

# copy scripts to /app/
COPY / /app/

# add conda path to PATH to allow entrypoint overwrite
ENV PATH="${PATH}:/opt/conda/bin"
14 changes: 8 additions & 6 deletions large/S3segmenter.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,13 @@
import pathlib

import watershed
import s3seg_util
import s3seg_qc
import ignored_args

import logging


import palom.reader

def main(argv=sys.argv):

parser = argparse.ArgumentParser(
Expand Down Expand Up @@ -67,13 +68,14 @@ def main(argv=sys.argv):
pixel_size = args.pixelSize
logging.info(f"Pixel size: {pixel_size} (user supplied)")
else:
pixel_size = s3seg_util.detect_pixel_size(img_path)
if pixel_size is None:
try:
pixel_size = palom.reader.OmePyramidReader(img_path).pixel_size
except Exception as err:
print(err)
logging.error(
'Auto-detect pixel size failed, use `--pixelSize SIZE` to specify it'
)
return 1
logging.info(f"Pixel size: {pixel_size} (from ome-xml)")

watershed.main([
'',
Expand All @@ -89,7 +91,7 @@ def main(argv=sys.argv):

s3seg_qc.run_mcmicro(
out_path,
qc_dir / 'nucleiRingOutlines.ome.tif',
qc_dir / f"{img_stem}-nucleiRingOutlines.ome.tif",
pmap_path=args.stackProbPath,
img_path=args.imagePath,
img_channels=img_channels,
Expand Down
1 change: 1 addition & 0 deletions large/_version.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
VERSION = '1.5.5'
272 changes: 272 additions & 0 deletions large/docker-env.lock

Large diffs are not rendered by default.

12 changes: 9 additions & 3 deletions large/s3seg_qc.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
import tifffile
import palom

import _version


def mask_to_bound(
img_da,
Expand Down Expand Up @@ -86,11 +88,15 @@ def run_mcmicro(
da_stack = da.array(out_channels)

palom.pyramid.write_pyramid(
palom.pyramid.normalize_mosaics(da_stack),
[da_stack],
out_path,
channel_names=channel_names,
channel_names=[channel_names],
pixel_size=pixel_size,
downscale_factor=2
downscale_factor=2,
compression='zlib',
tile_size=1024,
save_RAM=True,
kwargs_tifffile=dict(software=f"s3segmenter-large v{_version.VERSION}")
)

return 0
12 changes: 0 additions & 12 deletions large/s3seg_util.py

This file was deleted.

117 changes: 0 additions & 117 deletions large/save_tifffile_pyramid.py

This file was deleted.

61 changes: 35 additions & 26 deletions large/watershed.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,10 @@
format="%(asctime)s | %(levelname)-8s | %(message)s (%(filename)s:%(lineno)s)",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO
)
)

import _version

import save_tifffile_pyramid

def filter_label_area(label_img, area_min, area_max):
if np.all(label_img == 0):
Expand Down Expand Up @@ -120,21 +121,27 @@ def run(self, config_id=None, compute=True):
def write(self, file_path, img=None, config_id=None):
file_path = pathlib.Path(file_path)
file_name = file_path.name
if img is None: img = self.run(config_id, compute=False)
if file_name.endswith('.zarr'):
if img is None: img = self.run(config_id, compute=False)
logging.info(f'Writing to {file_path}')
with dask.diagnostics.ProgressBar():
return img.to_zarr(file_path)
if file_name.endswith(('.ome.tiff', '.ome.tif')):
if img is None: img = self.run(config_id)
logging.info(f'Writing to {file_path}')
logging.info(f'Writing to {file_path}')
pixel_size = self.pixel_size
if self.pixel_size is None:
pixel_sizes = (1, 1)
else:
pixel_sizes = (self.pixel_size, self.pixel_size)
return save_tifffile_pyramid.save_pyramid(
img, file_path, is_mask=True, pixel_sizes=pixel_sizes
)
pixel_size = 1
return palom.pyramid.write_pyramid(
[img],
file_path,
pixel_size=pixel_size,
downscale_factor=2,
compression='zlib',
is_mask=True,
tile_size=1024,
save_RAM=True,
kwargs_tifffile=dict(software=f"s3segmenter-large v{_version.VERSION}")
)
logging.warning('Write failed: output file type not supported')
return

Expand Down Expand Up @@ -406,10 +413,14 @@ def main(argv=sys.argv):

pixel_size = args.pixel_size
if pixel_size is None:
pixel_size = 1.0
logging.warning(
f"Pixel size not specified, using {pixel_size} micron as a placeholder"
)
try:
pixel_size = palom.reader.OmePyramidReader(args.i).pixel_size
except Exception as err:
print(err)
pixel_size = 1.0
logging.warning(
f"Pixel size not specified, using {pixel_size} µm as a placeholder"
)

segmentor = WatershedSegmentor(
da.from_array(probability_maps[1], chunks=2048),
Expand Down Expand Up @@ -473,12 +484,11 @@ def expand_mask_from_file(
tifffile.imread(input_path, aszarr=True, series=0, level=0)
)

with dask.diagnostics.ProgressBar():
segmentor.write_expanded(
expanded_path,
expand_size,
da.from_zarr(z).rechunk(2048)
)
segmentor.write_expanded(
expanded_path,
expand_size,
da.from_zarr(z).rechunk(2048)
)
return expanded_path

def difference_mask_from_file(
Expand Down Expand Up @@ -508,11 +518,10 @@ def difference_mask_from_file(
segmentor = WatershedSegmentor(
None, None, pixel_size=pixel_size
)
with dask.diagnostics.ProgressBar():
segmentor.write(
file_path=output_path,
img=out_mask
)
segmentor.write(
file_path=output_path,
img=out_mask
)
return


Expand Down

0 comments on commit 8eec1cd

Please sign in to comment.