Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(opendataset): add "SemanticMask" for "BDD100K_MOTS2020" dataset #1102

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions tensorbay/opendataset/BDD100K_MOT2020/catalog_mots.json
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,19 @@
}
]
},
"SEMANTIC_MASK": {
"categories": [
{ "name": "background", "categoryId": 0 },
{ "name": "pedestrian", "categoryId": 1 },
{ "name": "rider", "categoryId": 2 },
{ "name": "car", "categoryId": 3 },
{ "name": "truck", "categoryId": 4 },
{ "name": "bus", "categoryId": 5 },
{ "name": "train", "categoryId": 6 },
{ "name": "motorcycle", "categoryId": 7 },
{ "name": "bicycle", "categoryId": 8 }
]
},
"INSTANCE_MASK": {
"categories": [{ "name": "background", "categoryId": 0 }],
"attributes": [
Expand Down
37 changes: 25 additions & 12 deletions tensorbay/opendataset/BDD100K_MOT2020/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
import numpy as np

from tensorbay.dataset import Data, Dataset
from tensorbay.label import InstanceMask, LabeledBox2D, LabeledMultiPolygon
from tensorbay.label import InstanceMask, LabeledBox2D, LabeledMultiPolygon, SemanticMask
from tensorbay.opendataset._utility import glob

try:
Expand Down Expand Up @@ -187,7 +187,10 @@ def _generate_data(
if tracking_type == "mots":
original_mask_subdir = os.path.join(original_mask_dir, subdir_name)
mask_subdir = os.path.join(mask_dir, subdir_name)
os.makedirs(mask_subdir, exist_ok=True)
semantic_subdir = os.path.join(mask_subdir, "semantic")
instance_subdir = os.path.join(mask_subdir, "instance")
os.makedirs(semantic_subdir, exist_ok=True)
os.makedirs(instance_subdir, exist_ok=True)
with open(os.path.join(segment_labels_dir, f"{subdir_name}.json"), "r", encoding="utf-8") as fp:
label_contents = json.load(fp)
for label_content in label_contents:
Expand All @@ -200,9 +203,10 @@ def _generate_data(
) if tracking_type == "mot" else _get_mots_data(
image_path,
original_mask_subdir,
mask_subdir,
semantic_subdir,
instance_subdir,
os.path.splitext(label_content_name)[0],
label_content,
label_content=label_content,
)


Expand Down Expand Up @@ -231,8 +235,10 @@ def _get_mot_data(image_path: str, label_content: Dict[str, Any]) -> Data:
def _get_mots_data(
image_path: str,
original_mask_subdir: str,
mask_subdir: str,
semantic_subdir: str,
instance_subdir: str,
stem: str,
*,
label_content: Dict[str, Any],
) -> Data:
data = Data(image_path)
Expand All @@ -248,25 +254,28 @@ def _get_mots_data(
)
labeled_multipolygons.append(labeled_multipolygon)

mask_path = os.path.join(mask_subdir, f"{stem}.png")
semantic_path = os.path.join(semantic_subdir, f"{stem}.png")
instance_path = os.path.join(instance_subdir, f"{stem}.png")
mask_info = _save_and_get_mask_info(
os.path.join(original_mask_subdir, f"{stem}.png"),
mask_path,
os.path.join(mask_subdir, f"{stem}.json"),
semantic_path,
instance_path,
os.path.join(instance_subdir, f"{stem}.json"),
)
ins_mask = InstanceMask(mask_path)
ins_mask = InstanceMask(instance_path)
ins_mask.all_attributes = mask_info["all_attributes"]

label = data.label
label.multi_polygon = labeled_multipolygons
label.semantic_mask = SemanticMask(semantic_path)
label.instance_mask = ins_mask
return data


def _save_and_get_mask_info(
original_mask_path: str, mask_path: str, mask_info_path: str
original_mask_path: str, semantic_path: str, instance_path: str, mask_info_path: str
) -> Dict[str, Any]:
if not os.path.exists(mask_path):
if not os.path.exists(instance_path):
marshallmallows marked this conversation as resolved.
Show resolved Hide resolved
mask = np.array(Image.open(original_mask_path), dtype=np.uint16)
all_attributes = {}
for _, attributes, instance_id_high, instance_id_low in np.unique(
Expand All @@ -283,8 +292,12 @@ def _save_and_get_mask_info(
mask_info = {"all_attributes": all_attributes}
with open(mask_info_path, "w", encoding="utf-8") as fp:
json.dump(mask_info, fp)
Image.fromarray(mask[:, :, -1] + (mask[:, :, -2] << 8)).save(mask_path)
Image.fromarray(mask[:, :, -1] + (mask[:, :, -2] << 8)).save(instance_path)
if not os.path.exists(semantic_path):
Image.fromarray(mask[:, :, 0]).save(semantic_path)
else:
if not os.path.exists(semantic_path):
Image.fromarray(np.array(Image.open(original_mask_path))[:, :, 0]).save(semantic_path)
with open(mask_info_path, "r", encoding="utf-8") as fp:
mask_info = json.load(
fp,
Expand Down