Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
chyalexcheng authored Sep 17, 2023
1 parent 8fab8aa commit 7f9ec49
Showing 1 changed file with 17 additions and 12 deletions.
29 changes: 17 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,24 +69,29 @@ However, you still need to clone the GrainLearning repository to run the tutoria
## Tutorials

1. Linear regression with
the [`run_sim`](https://github.com/GrainLearning/grainLearning/blob/main/tutorials/simple_regression/linear_regression/python_linear_regression_solve.py#L14)
callback function of the [`DynamicSystem`](https://github.com/GrainLearning/grainLearning/blob/main/grainlearning/dynamic_systems.py)
the [`run_sim`](tutorials/simple_regression/linear_regression/python_linear_regression_solve.py#L14)
callback function of the [`DynamicSystem`](grainlearning/dynamic_systems.py)
class,
in [python_linear_regression_solve.py](https://github.com/GrainLearning/grainLearning/blob/main/tutorials/simple_regression/linear_regression/python_linear_regression_solve.py)
in [python_linear_regression_solve.py](tutorials/simple_regression/linear_regression/python_linear_regression_solve.py)

2. Nonlinear, multivariate regression

3. Interact with the numerical model of your choice
via [`run_sim`](https://github.com/GrainLearning/grainLearning/blob/main/tutorials/simple_regression/linear_regression/linear_regression_solve.py#L11)
via [`run_sim`](tutorials/simple_regression/linear_regression/linear_regression_solve.py#L11)
,
in [linear_regression_solve.py](https://github.com/GrainLearning/grainLearning/blob/main/tutorials/simple_regression/linear_regression/linear_regression_solve.py)

4. Load existing simulation data and run GrainLearning for one iteration,
in [oedo_load_and_resample.py](https://github.com/GrainLearning/grainLearning/blob/main/tutorials/oedo_compression/oedo_load_and_resample.py)
5. RNN module tutorials:
- [Train your RNN](tutorials/rnn/train_rnn.ipynb)
- [Predict using an RNN](tutorials/rnn/predict.ipynb)
- [Use an RNN in the calibration workflow](tutorials/rnn/rnn_calibration_GL.ipynb)
in [linear_regression_solve.py](main/tutorials/simple_regression/linear_regression/linear_regression_solve.py)

4. Load existing DEM simulation data and run GrainLearning for one iteration,
in [oedo_load_and_resample.py](tutorials/oedo_compression/oedo_load_and_resample.py)

5. Example of GrainLearning integration into YADE
- [Two particle collision](tutorials/physics_based/two_particle_collision)
- [Triaxial compression](tutorials/physics_based/triaxial_compression)

6. Data-driven module tutorials:
- [Train your LSTM model](tutorials/data_driven/LSTM/train_rnn.ipynb)
- [Predict using an LSTM model](tutorials/data_driven/LSTM/predict.ipynb)
- [Use an LSTM model in the calibration workflow](tutorials/data_driven/LSTM/rnn_calibration_GL.ipynb)

## Citing GrainLearning

Expand Down

0 comments on commit 7f9ec49

Please sign in to comment.