Skip to content

Commit

Permalink
samples: ucaip samples batch 6 of 6 (#17)
Browse files Browse the repository at this point in the history
  • Loading branch information
munkhuushmgl authored Nov 6, 2020
1 parent 69d7c85 commit ac542f2
Show file tree
Hide file tree
Showing 25 changed files with 2,566 additions and 2 deletions.
13 changes: 11 additions & 2 deletions aiplatform/snippets/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -22,15 +22,24 @@
<maven.compiler.source>1.8</maven.compiler.source>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>


<!-- [START aiplatform_install_with_bom] -->
<dependencies>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-aiplatform</artifactId>
<version>0.0.1-SNAPSHOT</version>
</dependency>
<!-- [END aiplatform_install_with_bom] -->
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java-util</artifactId>
<version>4.0.0-rc-1</version>
</dependency>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-storage</artifactId>
<version>1.111.0</version>
</dependency>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-storage</artifactId>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package aiplatform;

// [START aiplatform_create_dataset_text_sample]

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1beta1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1beta1.Dataset;
import com.google.cloud.aiplatform.v1beta1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1beta1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTextSample {

public static void main(String[] args)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";

createDatasetTextSample(project, datasetDisplayName);
}

static void createDatasetTextSample(String project, String datasetDisplayName)
throws IOException, InterruptedException, ExecutionException, TimeoutException {
DatasetServiceSettings datasetServiceSettings =
DatasetServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (DatasetServiceClient datasetServiceClient =
DatasetServiceClient.create(datasetServiceSettings)) {
String location = "us-central1";
String metadataSchemaUri =
"gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml";

LocationName locationName = LocationName.of(project, location);
Dataset dataset =
Dataset.newBuilder()
.setDisplayName(datasetDisplayName)
.setMetadataSchemaUri(metadataSchemaUri)
.build();

OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
datasetServiceClient.createDatasetAsync(locationName, dataset);
System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());

System.out.println("Waiting for operation to finish...");
Dataset datasetResponse = datasetFuture.get(120, TimeUnit.SECONDS);

System.out.println("Create Text Dataset Response");
System.out.format("\tName: %s\n", datasetResponse.getName());
System.out.format("\tDisplay Name: %s\n", datasetResponse.getDisplayName());
System.out.format("\tMetadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
System.out.format("\tMetadata: %s\n", datasetResponse.getMetadata());
System.out.format("\tCreate Time: %s\n", datasetResponse.getCreateTime());
System.out.format("\tUpdate Time: %s\n", datasetResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", datasetResponse.getLabelsMap());
}
}
}
// [END aiplatform_create_dataset_text_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package aiplatform;

// [START aiplatform_create_training_pipeline_text_classification_sample]

import com.google.cloud.aiplatform.v1beta1.DeployedModelRef;
import com.google.cloud.aiplatform.v1beta1.EnvVar;
import com.google.cloud.aiplatform.v1beta1.ExplanationMetadata;
import com.google.cloud.aiplatform.v1beta1.ExplanationParameters;
import com.google.cloud.aiplatform.v1beta1.ExplanationSpec;
import com.google.cloud.aiplatform.v1beta1.FilterSplit;
import com.google.cloud.aiplatform.v1beta1.FractionSplit;
import com.google.cloud.aiplatform.v1beta1.InputDataConfig;
import com.google.cloud.aiplatform.v1beta1.LocationName;
import com.google.cloud.aiplatform.v1beta1.Model;
import com.google.cloud.aiplatform.v1beta1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1beta1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1beta1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1beta1.Port;
import com.google.cloud.aiplatform.v1beta1.PredefinedSplit;
import com.google.cloud.aiplatform.v1beta1.PredictSchemata;
import com.google.cloud.aiplatform.v1beta1.SampledShapleyAttribution;
import com.google.cloud.aiplatform.v1beta1.TimestampSplit;
import com.google.cloud.aiplatform.v1beta1.TrainingPipeline;
import com.google.protobuf.Any;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;

public class CreateTrainingPipelineTextClassificationSample {

public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
String project = "YOUR_PROJECT_ID";
String datasetId = "YOUR_DATASET_ID";
String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";

createTrainingPipelineTextClassificationSample(
project, trainingPipelineDisplayName, datasetId, modelDisplayName);
}

static void createTrainingPipelineTextClassificationSample(
String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();

// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/"
+ "automl_text_classification_1.0.0.yaml";
String jsonString = "{\"multiLabel\": false}";

LocationName locationName = LocationName.of(project, location);

Value.Builder trainingTaskInputs = Value.newBuilder();
JsonFormat.parser().merge(jsonString, trainingTaskInputs);

InputDataConfig trainingInputDataConfig =
InputDataConfig.newBuilder().setDatasetId(datasetId).build();
Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(trainingPipelineDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(trainingTaskInputs)
.setInputDataConfig(trainingInputDataConfig)
.setModelToUpload(model)
.build();

TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

System.out.println("Create Training Pipeline Text Classification Response");
System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());

System.out.format(
"\tTraining Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("State: %s\n", trainingPipelineResponse.getState());

System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("\tStartTime %s\n", trainingPipelineResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());

InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
System.out.println("\tInput Data Config");
System.out.format("\t\tDataset Id: %s", inputDataConfig.getDatasetId());
System.out.format("\t\tAnnotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
System.out.println("\t\tFraction Split");
System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());

FilterSplit filterSplit = inputDataConfig.getFilterSplit();
System.out.println("\t\tFilter Split");
System.out.format("\t\t\tTraining Filter: %s\n", filterSplit.getTrainingFilter());
System.out.format("\t\t\tValidation Filter: %s\n", filterSplit.getValidationFilter());
System.out.format("\t\t\tTest Filter: %s\n", filterSplit.getTestFilter());

PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
System.out.println("\t\tPredefined Split");
System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());

TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
System.out.println("\t\tTimestamp Split");
System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());

Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("\tModel To Upload");
System.out.format("\t\tName: %s\n", modelResponse.getName());
System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());

System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("\t\tMetadata: %s\n", modelResponse.getMetadata());
System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());

System.out.format(
"\t\tSupported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList());
System.out.format(
"\t\tSupported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList());
System.out.format(
"\t\tSupported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList());

System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
System.out.format("\t\tLabels: %sn\n", modelResponse.getLabelsMap());

PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("\t\tPredict Schemata");
System.out.format("\t\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format(
"\t\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format(
"\t\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
System.out.println("\t\tSupported Export Format");
System.out.format("\t\t\tId: %s\n", exportFormat.getId());
}

ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
System.out.println("\t\tContainer Spec");
System.out.format("\t\t\tImage Uri: %s\n", modelContainerSpec.getImageUri());
System.out.format("\t\t\tCommand: %s\n", modelContainerSpec.getCommandList());
System.out.format("\t\t\tArgs: %s\n", modelContainerSpec.getArgsList());
System.out.format("\t\t\tPredict Route: %s\n", modelContainerSpec.getPredictRoute());
System.out.format("\t\t\tHealth Route: %s\n", modelContainerSpec.getHealthRoute());

for (EnvVar envVar : modelContainerSpec.getEnvList()) {
System.out.println("\t\t\tEnv");
System.out.format("\t\t\t\tName: %s\n", envVar.getName());
System.out.format("\t\t\t\tValue: %s\n", envVar.getValue());
}

for (Port port : modelContainerSpec.getPortsList()) {
System.out.println("\t\t\tPort");
System.out.format("\t\t\t\tContainer Port: %s\n", port.getContainerPort());
}

for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("\t\tDeployed Model");
System.out.format("\t\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("\t\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}

ExplanationSpec explanationSpec = modelResponse.getExplanationSpec();
System.out.println("\t\tExplanation Spec");

ExplanationParameters explanationParameters = explanationSpec.getParameters();
System.out.println("\t\t\tParameters");

SampledShapleyAttribution sampledShapleyAttribution =
explanationParameters.getSampledShapleyAttribution();
System.out.println("\t\t\t\tSampled Shapley Attribution");
System.out.format("\t\t\t\t\tPath Count: %s\n", sampledShapleyAttribution.getPathCount());

ExplanationMetadata explanationMetadata = explanationSpec.getMetadata();
System.out.println("\t\t\tMetadata");
System.out.format("\t\t\t\tInputs: %s\n", explanationMetadata.getInputsMap());
System.out.format("\t\t\t\tOutputs: %s\n", explanationMetadata.getOutputsMap());
System.out.format(
"\t\t\t\tFeature Attributions Schema_uri: %s\n",
explanationMetadata.getFeatureAttributionsSchemaUri());

Status status = trainingPipelineResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
}
}
}
// [END aiplatform_create_training_pipeline_text_classification_sample]
Loading

0 comments on commit ac542f2

Please sign in to comment.