Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: update metadata schema #1345

Merged
merged 1 commit into from
Apr 28, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
304 changes: 154 additions & 150 deletions blueprints/data-solutions/vertex-mlops/metadata.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,154 +17,158 @@ kind: BlueprintMetadata
metadata:
name: fabric-blueprint-vertex-mlops
spec:
title: MLOps with Vertex AI
source:
repo: https://github.com/GoogleCloudPlatform/cloud-foundation-fabric.git
dir: blueprints/data-solutions/vertex-mlops
sourceType: git
version: 21.0.0
actuationTool:
type: Terraform
version: '>= 1.3.0'
description:
tagline: MLOps with Vertex AI
detailed: |-
This example implements the infrastructure required to deploy an end-to-end MLOps process using Vertex AI platform.
architecture:
- Vertex Workbench (for the experimentation environment).
- GCP Project (optional) to host all the resources.
- Isolated VPC network and a subnet to be used by Vertex and Dataflow. Alternatively, an external Shared VPC can be configured using the `network_config`variable.
- Firewall rule to allow the internal subnet communication required by Dataflow.
- Cloud NAT required to reach the internet from the different computing resources (Vertex and Dataflow).
- GCS buckets to host Vertex AI and Cloud Build Artifacts. By default the buckets will be regional and should match the Vertex AI region for the different resources (i.e. Vertex Managed Dataset) and processes (i.e. Vertex trainining).
- BigQuery Dataset where the training data will be stored. This is optional, since the training data could be already hosted in an existing BigQuery dataset.
- Artifact Registry Docker repository to host the custom images.
- Service account (`PREFIX-sa-mlops`) with the minimum permissions required by Vertex AI and Dataflow (if this service is used inside of the Vertex AI Pipeline).
- Service account (`PREFIX-sa-github@`) to be used by Workload Identity Federation, to federate Github identity (Optional).
- Secret Manager to store the Github SSH key to get access the CICD code repo.
documentation:
- title: Architecture Diagram
url: https://github.com/GoogleCloudPlatform/cloud-foundation-fabric/blob/master/blueprints/data-solutions/vertex-mlops/images/mlops_projects.png
variables:
- name: notebooks
description: Vertex AI workbenchs to be deployed. Service Account runtime/instances deployed.
type: |-
map(object({
type = string
machine_type = optional(string, "n1-standard-4")
internal_ip_only = optional(bool, true)
idle_shutdown = optional(bool, false)
owner = optional(string)
}))
required: true
- name: project_config
description: Provide 'billing_account_id' value if project creation is needed, uses existing 'project_id' if null. Parent is in 'folders/nnn' or 'organizations/nnn' format.
type: |-
object({
billing_account_id = optional(string)
parent = optional(string)
project_id = string
})
required: true
- name: bucket_name
description: GCS bucket name to store the Vertex AI artifacts.
type: string
default: null
required: false
- name: dataset_name
description: BigQuery Dataset to store the training data.
type: string
default: null
required: false
- name: groups
description: Name of the groups ([email protected]) to apply opinionated IAM permissions.
type: |-
object({
gcp-ml-ds = optional(string),
gcp-ml-eng = optional(string),
gcp-ml-viewer = optional(string)
})
default: {}
required: false
- name: identity_pool_claims
description: Claims to be used by Workload Identity Federation (i.e.: attribute.repository/ORGANIZATION/REPO). If a not null value is provided, then google_iam_workload_identity_pool resource will be created.
type: string
default: null
required: false
- name: labels
description: Labels to be assigned at project level.
type: map(string)
required: false
default: {}
- name: location
description: Location used for multi-regional resources.
type: string
default: eu
required: false
- name: network_config
description: Shared VPC network configurations to use. If null networks will be created in projects with preconfigured values.
type: |-
object({
host_project = string
network_self_link = string
subnet_self_link = string
})
default: null
required: false
- name: prefix
description: Prefix used for the project id.
type: string
default: null
required: false
- name: region
description: Region used for regional resources.
type: string
default: europe-west4
required: false
- name: repo_name
description: Cloud Source Repository name. null to avoid to create it.
type: string
default: null
required: false
- name: service_encryption_keys
description: Cloud KMS to use to encrypt different services. Key location should match service region.
type: |-
object({
aiplatform = optional(string)
bq = optional(string)
notebooks = optional(string)
secretmanager = optional(string)
storage = optional(string)
})
default: {}
required: false
outputs:
- name: github
description: Github Configuration.
- name: notebook
description: Vertex AI notebooks ids.
- name: project
description: The project resource as return by the project module.
roles:
- level: Project
info:
title: MLOps with Vertex AI
source:
repo: https://github.com/GoogleCloudPlatform/cloud-foundation-fabric.git
dir: blueprints/data-solutions/vertex-mlops
sourceType: git
version: 21.0.0
actuationTool:
type: Terraform
version: '>= 1.3.0'
description:
tagline: MLOps with Vertex AI
detailed: |-
This example implements the infrastructure required to deploy an end-to-end MLOps process using Vertex AI platform.
architecture:
- Vertex Workbench (for the experimentation environment).
- GCP Project (optional) to host all the resources.
- Isolated VPC network and a subnet to be used by Vertex and Dataflow. Alternatively, an external Shared VPC can be configured using the `network_config`variable.
- Firewall rule to allow the internal subnet communication required by Dataflow.
- Cloud NAT required to reach the internet from the different computing resources (Vertex and Dataflow).
- GCS buckets to host Vertex AI and Cloud Build Artifacts. By default the buckets will be regional and should match the Vertex AI region for the different resources (i.e. Vertex Managed Dataset) and processes (i.e. Vertex trainining).
- BigQuery Dataset where the training data will be stored. This is optional, since the training data could be already hosted in an existing BigQuery dataset.
- Artifact Registry Docker repository to host the custom images.
- Service account (`PREFIX-sa-mlops`) with the minimum permissions required by Vertex AI and Dataflow (if this service is used inside of the Vertex AI Pipeline).
- Service account (`PREFIX-sa-github@`) to be used by Workload Identity Federation, to federate Github identity (Optional).
- Secret Manager to store the Github SSH key to get access the CICD code repo.
content:
documentation:
- title: Architecture Diagram
url: https://github.com/GoogleCloudPlatform/cloud-foundation-fabric/blob/master/blueprints/data-solutions/vertex-mlops/images/mlops_projects.png
interfaces:
variables:
- name: notebooks
description: Vertex AI workbenchs to be deployed. Service Account runtime/instances deployed.
type: |-
map(object({
type = string
machine_type = optional(string, "n1-standard-4")
internal_ip_only = optional(bool, true)
idle_shutdown = optional(bool, false)
owner = optional(string)
}))
required: true
- name: project_config
description: Provide 'billing_account_id' value if project creation is needed, uses existing 'project_id' if null. Parent is in 'folders/nnn' or 'organizations/nnn' format.
type: |-
object({
billing_account_id = optional(string)
parent = optional(string)
project_id = string
})
required: true
- name: bucket_name
description: GCS bucket name to store the Vertex AI artifacts.
type: string
default: null
required: false
- name: dataset_name
description: BigQuery Dataset to store the training data.
type: string
default: null
required: false
- name: groups
description: Name of the groups ([email protected]) to apply opinionated IAM permissions.
type: |-
object({
gcp-ml-ds = optional(string),
gcp-ml-eng = optional(string),
gcp-ml-viewer = optional(string)
})
default: {}
required: false
- name: identity_pool_claims
description: "Claims to be used by Workload Identity Federation (i.e.: attribute.repository/ORGANIZATION/REPO). If a not null value is provided, then google_iam_workload_identity_pool resource will be created."
type: string
default: null
required: false
- name: labels
description: Labels to be assigned at project level.
type: map(string)
required: false
default: {}
- name: location
description: Location used for multi-regional resources.
type: string
default: eu
required: false
- name: network_config
description: Shared VPC network configurations to use. If null networks will be created in projects with preconfigured values.
type: |-
object({
host_project = string
network_self_link = string
subnet_self_link = string
})
default: null
required: false
- name: prefix
description: Prefix used for the project id.
type: string
default: null
required: false
- name: region
description: Region used for regional resources.
type: string
default: europe-west4
required: false
- name: repo_name
description: Cloud Source Repository name. null to avoid to create it.
type: string
default: null
required: false
- name: service_encryption_keys
description: Cloud KMS to use to encrypt different services. Key location should match service region.
type: |-
object({
aiplatform = optional(string)
bq = optional(string)
notebooks = optional(string)
secretmanager = optional(string)
storage = optional(string)
})
default: {}
required: false
outputs:
- name: github
description: Github Configuration.
- name: notebook
description: Vertex AI notebooks ids.
- name: project
description: The project resource as return by the project module.
requirements:
roles:
- roles/owner
services:
- aiplatform.googleapis.com
- artifactregistry.googleapis.com
- bigquery.googleapis.com
- bigquerystorage.googleapis.com
- cloudbuild.googleapis.com
- compute.googleapis.com
- datacatalog.googleapis.com
- dataflow.googleapis.com
- iam.googleapis.com
- ml.googleapis.com
- monitoring.googleapis.com
- notebooks.googleapis.com
- secretmanager.googleapis.com
- servicenetworking.googleapis.com
- serviceusage.googleapis.com
- stackdriver.googleapis.com
- storage.googleapis.com
- storage-component.googleapis.com
- level: Project
roles:
- roles/owner
services:
- aiplatform.googleapis.com
- artifactregistry.googleapis.com
- bigquery.googleapis.com
- bigquerystorage.googleapis.com
- cloudbuild.googleapis.com
- compute.googleapis.com
- datacatalog.googleapis.com
- dataflow.googleapis.com
- iam.googleapis.com
- ml.googleapis.com
- monitoring.googleapis.com
- notebooks.googleapis.com
- secretmanager.googleapis.com
- servicenetworking.googleapis.com
- serviceusage.googleapis.com
- stackdriver.googleapis.com
- storage.googleapis.com
- storage-component.googleapis.com