-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
590 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
-0.561720279923928 -0.980595872206212 -1.42576436471775 -1.38746518258463 -1.40328952255995 -1.32594518129933 -1.17920763919491 -1.13976931175442 -1.44704190760872 -1.80758528855703 | ||
0.105627903577331 -0.0224760977406341 -0.033346419075399 0.0583011517226242 0.128718992901148 0.352155379240605 0.30198127014967 0.346164763337832 0.852750853220236 0.81239896064913 | ||
0.162117647512197 0.61663482915398 0.400878181575701 0.366695795608074 0.278393392324771 0.0730857562461404 0.166434815191386 0.189330647411269 -0.125279993617079 0.126627300269534 | ||
-0.0406942552122779 -0.576900617964391 -0.313842145078441 -0.367136023164517 -0.382100222118444 -0.354039859671709 -0.137353128426152 -0.160383552642979 -0.519155392281931 -0.475450377654029 | ||
-0.40362251190118 -0.286473185314161 -0.0899560295412541 -0.0965770833139645 -0.172949550426655 -0.125412547613036 0.150417355582264 0.114588798098553 0.245979092609726 -0.382835955162689 | ||
0.878246951042944 0.90514099306536 1.23213880865026 1.31832983761677 1.25986701034999 1.39995300408615 1.09368733517267 1.09091168360099 1.08437305769252 1.12958522955154 | ||
0.498400783342133 0.587765513506474 0.253033066193859 0.370366369595461 0.449724976200575 0.365044359880781 0.387907991494453 0.383922539609155 0.188591625404994 -0.412681707489972 | ||
0.221653648829914 0.242994434466489 -0.603741680289462 -0.481123603140553 -0.430823255733856 -0.435302829856887 -0.0456562561348847 -0.0520577661000839 -0.0385949396913763 -0.224243660239918 | ||
-0.265084561759286 0.0918819311680734 0.33493706624183 0.3813425051495 0.403035021178183 0.477504121863839 0.532006724734535 0.545519555275899 0.766384404185368 0.831916014250039 | ||
-0.624759045353021 -0.66962164463356 -1.13959552334022 -1.27820632084631 -1.28015141876924 -1.32693076635632 -0.909064222616852 -0.937550642541083 -0.261982584282485 -0.111118755041501 | ||
-0.0720190591786999 -0.450621402053479 -0.863523249181356 -0.872842112502145 -1.09801753225393 -1.06373666474452 -1.11037218155514 -1.10146557900737 -0.80036781143047 -0.372168139391873 | ||
-0.00857855953622452 0.354989948682959 1.27837817189419 1.2276458819467 1.28672546515841 1.17197787379145 1.16780775465139 1.17376822972155 1.40385625815708 1.62149324528253 | ||
-0.229761733242758 -0.0219462023841505 -0.390687969122839 -0.302494898576672 -0.448911892337499 -0.604566355138878 -0.916877016960797 -0.906457424708054 -1.1126000897522 -1.86130665917621 | ||
-0.589488920208699 -0.721350422835282 -0.198899309272137 -0.181407705029833 -0.118642488162701 -0.168910827232443 -0.0742514161618894 -0.0793110793398157 -0.142750010906859 0.198798486949491 | ||
-0.0284299839046239 0.120862725181517 -0.186276678178437 -0.160980196642537 -0.293834629711641 -0.243113408459892 -0.472778364589375 -0.477458926549254 -0.153555736410121 -0.255890019644184 | ||
-0.10591001233745 -0.362589685776349 0.325478604785015 0.378715486938594 0.26636852369326 0.161411001959766 0.60597685791033 0.610078516181616 0.572140131942936 0.511051653616906 | ||
0.305051871362991 0.118813574717376 -0.527714492647065 -0.536667992026614 -0.580328770509275 -0.649984435188841 -0.710711338095119 -0.658502482012635 -0.902318910541349 -0.764435899578719 | ||
0.536106973675048 1.02057897403551 0.605598476112832 0.50868937957064 0.650724511213557 0.751611789150715 0.897137728286995 0.850360925500868 1.41770846041982 1.7846819452796 | ||
0.0564993149832159 0.463479099414294 0.460736813395207 0.474848735635176 0.426112416628774 0.390581106871229 0.793645778910023 0.806735588287548 0.844742715658839 1.09151995921733 | ||
-0.067723281679949 0.564285422804652 0.788229511696293 0.788617644079093 0.89513355500255 0.876105020354802 0.677547485945377 0.694822145749253 1.17466687016968 0.593832946037088 | ||
0.225364328151606 0.103238565260935 -0.0517032463701438 -0.0662367018241913 -0.0940887051913717 0.0333532293444299 0.210733515664954 0.178213696887622 -0.423217117197478 0.456888013184721 | ||
0.0473026615725538 -0.0456028508287293 -0.177770714303978 -0.139356053949194 0.0277153774848011 -0.0567070095383378 0.00732111889985342 0.0162173446637164 0.110044897825425 -0.195869011808354 | ||
-0.356841619301375 -0.852050102759202 -1.56144734571101 -1.61182361556797 -1.54063437363926 -1.62074713993949 -1.79194559791364 -1.8512488891935 -1.76010649453676 -1.45638353758425 | ||
0.341165476595727 -0.498516965260338 0.0176858700381507 0.0956453734897127 0.0912542311909078 -0.0992749262782443 -0.336170653055667 -0.335003690028184 -0.639956591017614 -0.55941334662177 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# VolEsti (volume computation and sampling library) | ||
|
||
# Copyright (c) 2012-2020 Vissarion Fisikopoulos | ||
# Copyright (c) 2018-2020 Apostolos Chalkis | ||
# Copyright (c) 2020-2020 Marios Papachristou | ||
|
||
# Contributed and/or modified by Marios Papachristou, as part of Google Summer of Code 2020 program. | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
# Example script for sampling from a Generalized Hyperbolic density | ||
|
||
# Import required libraries | ||
library(ggplot2) | ||
library(volesti) | ||
library(numDeriv) | ||
library(GeneralizedHyperbolic) | ||
|
||
A = matrix(c(1, -1), ncol=1, nrow=2, byrow=TRUE) | ||
b = c(4,4) | ||
|
||
f <- function(x) (-log(dghyp(x))) | ||
grad_f <- function(x) (-ddghyp(x)/dghyp(x)) | ||
|
||
x_min = matrix(0, 1, 1) | ||
|
||
# Create domain of truncation | ||
P <- volesti::Hpolytope(A = A, b = b) | ||
|
||
# Smoothness and strong-convexity | ||
L <- estimtate_lipschitz_constant(grad_f, P, 1000) | ||
m <- L | ||
|
||
# Warm start point from truncated Gaussian | ||
warm_start <- sample_points(P, n = 1, random_walk = list("nburns" = 5000), distribution = list("density" = "gaussian", "variance" = 1/L, "mode" = x_min)) | ||
|
||
# Sample points | ||
n_samples <- 10000 | ||
n_burns <- n_samples / 2 | ||
|
||
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "HMC", "step_size" = 0.5, "nburns" = n_burns, "walk_length" = 1, "solver" = "leapfrog", "starting_point" = warm_start[,1]), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m)) | ||
|
||
# Plot histogram | ||
hist(pts, | ||
probability=TRUE, | ||
breaks = 100, | ||
border="blue", | ||
main="Genrealized Hyperbolic Density with lambda = 1, alpha = 1, beta = 0, delta = 1, mu = 0", | ||
xlab="Samples", | ||
ylab="Density" | ||
) | ||
|
||
cat("Sample mean is: ") | ||
sample_mean <- mean(pts) | ||
cat(sample_mean) | ||
cat("\n") | ||
cat("Sample variance is: ") | ||
sample_variance <- mean((pts - sample_mean)^2) | ||
cat(sample_variance) | ||
|
||
n_ess = min(ess(pts)) | ||
psrf = max(psrf_univariate(pts)) | ||
|
||
cat("\nEffective sample size: ", n_ess, append=TRUE) | ||
cat("\nPSRF: ", psrf, append=TRUE) | ||
cat("\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
# VolEsti (volume computation and sampling library) | ||
|
||
# Copyright (c) 2012-2020 Vissarion Fisikopoulos | ||
# Copyright (c) 2018-2020 Apostolos Chalkis | ||
# Copyright (c) 2020-2020 Marios Papachristou | ||
|
||
# Contributed and/or modified by Marios Papachristou, as part of Google Summer of Code 2020 program. | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
# Example script for using the logconcave sampling methods | ||
|
||
# Import required libraries | ||
library(ggplot2) | ||
library(volesti) | ||
library(R.matlab) | ||
|
||
# Sampling from logconcave density example | ||
|
||
# Helper function | ||
norm_vec <- function(x) sqrt(sum(x^2)) | ||
|
||
|
||
# Load polytopes from mat file | ||
root <- rprojroot::find_root_file(criterion = rprojroot::has_file("DESCRIPTION")) | ||
metabolic_polytope_mat <- readMat(paste(root , '/man/examples/data/polytope_e_coli.mat', sep="")) | ||
A <- as.matrix(metabolic_polytope_mat$polytope[[1]]) | ||
b <- as.matrix(metabolic_polytope_mat$polytope[[2]]) | ||
center <- as.matrix(metabolic_polytope_mat$polytope[[3]]) | ||
radius <- as.numeric(metabolic_polytope_mat$polytope[[4]]) | ||
sigma <- 1 | ||
dimension <- dim(A)[2] | ||
|
||
|
||
# Negative log-probability oracle | ||
f <- function(x) (norm_vec(x)^2 / (2 * sigma^2)) | ||
|
||
# Negative log-probability gradient oracle | ||
grad_f <- function(x) (x / sigma^2) | ||
|
||
|
||
# Smoothness and strong-convexity | ||
L <- 1 / sigma^2 | ||
m <- 1 / sigma^2 | ||
|
||
# Center polytope | ||
b_new <- b - A %*% center | ||
|
||
# Create volesti polytope | ||
P <- Hpolytope(A = A, b = c(b_new)) | ||
|
||
# Rounding | ||
#Tr <- rounding(H) | ||
|
||
#P <- Hpolytope$new(A = Tr$Mat[1:nrow(Tr$Mat), 2:ncol(Tr$Mat)], b = Tr$Mat[,1]) | ||
|
||
# Center is origin (after shift) | ||
x_min = matrix(0, dimension, 1) | ||
|
||
# Generate samples with HNR | ||
start_time <- Sys.time() | ||
rdhr_samples <- sample_points(P, n = 10, random_walk = list("walk" = "RDHR", "nburns" = 10, "walk_length" = 1), distribution = list("density" = "gaussian", "variance" = 1/L, "mode" = x_min)) | ||
end_time <- Sys.time() | ||
|
||
# Calculate Effective Sample size | ||
rdhr_ess = ess(rdhr_samples) | ||
min_ess <- min(rdhr_ess) | ||
|
||
# Calculate PSRF | ||
rdhr_psrfs = psrf_univariate(rdhr_samples) | ||
max_psrf = max(rdhr_psrfs) | ||
elapsed_time <- end_time - start_time | ||
|
||
# Print results | ||
cat('Min Effective Sample Size: ') | ||
cat(min_ess) | ||
cat('\n') | ||
cat('Maximum PSRF: ') | ||
cat(max_psrf) | ||
cat('\n') | ||
cat('Time per independent sample: ') | ||
cat(elapsed_time / min_ess) | ||
cat('sec') | ||
|
||
outfile <- paste(root , '/man/examples/data/samples_hnr_iAB_PLT_283.txt', sep="") | ||
|
||
write.table(rdhr_samples, file=outfile, row.names=FALSE, col.names=FALSE) | ||
|
||
start_time <- Sys.time() | ||
hmc_samples <- sample_points(P, n = 10, random_walk = list("walk" = "HMC", "step_size" = 0.07, "nburns" = 10, "walk_length" = 30, "solver" = "leapfrog", "starting_point" = rdhr_samples[, ncol(rdhr_samples)]), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m)) | ||
end_time <- Sys.time() | ||
|
||
# Calculate Effective Sample size | ||
hmc_ess = ess(hmc_samples) | ||
min_ess <- min(hmc_ess) | ||
|
||
# Calculate PSRF | ||
hmc_psrfs = psrf_univariate(hmc_samples) | ||
max_psrf = max(hmc_psrfs) | ||
elapsed_time <- end_time - start_time | ||
|
||
# Print results | ||
cat('HMC\n') | ||
cat('Min Effective Sample Size: ') | ||
cat(min_ess) | ||
cat('\n') | ||
cat('Maximum PSRF: ') | ||
cat(max_psrf) | ||
cat('\n') | ||
cat('Time per independent sample: ') | ||
cat(elapsed_time / min_ess) | ||
cat('sec') | ||
cat('\n') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# VolEsti (volume computation and sampling library) | ||
|
||
# Copyright (c) 2012-2020 Vissarion Fisikopoulos | ||
# Copyright (c) 2018-2020 Apostolos Chalkis | ||
# Copyright (c) 2020-2020 Marios Papachristou | ||
|
||
# Contributed and/or modified by Marios Papachristou, as part of Google Summer of Code 2020 program. | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
# Example script for using the logconcave sampling methods | ||
|
||
# Import required libraries | ||
library(ggplot2) | ||
library(volesti) | ||
|
||
# Sampling from logconcave density example | ||
|
||
# Helper function | ||
norm_vec <- function(x) sqrt(sum(x^2)) | ||
|
||
# Negative log-probability oracle | ||
f <- function(x) (norm_vec(x)^2 + sum(x)) | ||
|
||
# Negative log-probability gradient oracle | ||
grad_f <- function(x) (2 * x + 1) | ||
|
||
dimension <- 50 | ||
facets <- 200 | ||
|
||
# Create domain of truncation | ||
H <- gen_rand_hpoly(dimension, facets) | ||
|
||
# Rounding | ||
Tr <- rounding(H, seed = 127) | ||
|
||
P <- Hpolytope(A = Tr$Mat[1:nrow(Tr$Mat), 2:ncol(Tr$Mat)], b = Tr$Mat[,1]) | ||
|
||
x_min = matrix(0, dimension, 1) | ||
|
||
# Warm start point from truncated Gaussian | ||
warm_start <- sample_points(P, n = 1, random_walk = list("nburns" = 5000), distribution = list("density" = "gaussian", "variance" = 1/2, "mode" = x_min)) | ||
|
||
# Sample points | ||
n_samples <- 20000 | ||
|
||
samples <- sample_points(P, n = n_samples, random_walk = list("walk" = "NUTS", "solver" = "leapfrog", "starting_point" = warm_start[,1]), | ||
distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f)) | ||
|
||
# Plot histogram | ||
hist(samples[1,], probability=TRUE, breaks = 100) | ||
|
||
psrfs <- psrf_univariate(samples) | ||
n_ess <- ess(samples) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# VolEsti (volume computation and sampling library) | ||
|
||
# Copyright (c) 2012-2020 Vissarion Fisikopoulos | ||
# Copyright (c) 2018-2020 Apostolos Chalkis | ||
# Copyright (c) 2020-2020 Marios Papachristou | ||
# Copyright (c) 2022-2022 Ioannis Iakovidis | ||
|
||
# Contributed and/or modified by Ioannis Iakovidis, as part of Google Summer of Code 2022 program. | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
# Example script for using the logconcave sampling methods | ||
|
||
# Import required libraries | ||
library(volesti) | ||
|
||
# Sampling from uniform density example | ||
|
||
logconcave_sample<- function(P,distribution, n_samples ,n_burns){ | ||
if (distribution == "uniform"){ | ||
f <- function(x) (0) | ||
grad_f <- function(x) (0) | ||
L=1 | ||
m=1 | ||
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m)) | ||
return(max(psrf_univariate(pts, "interval"))) | ||
} | ||
else if(distribution == "gaussian"){ | ||
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "variance"=8)) | ||
return(max(psrf_univariate(pts, "interval"))) | ||
} | ||
} | ||
|
||
for (i in 1:2) { | ||
|
||
if (i==1) { | ||
distribution = 'gaussian' | ||
cat("Gaussian ") | ||
} else { | ||
distribution = 'uniform' | ||
cat("Uniform ") | ||
} | ||
|
||
P = gen_simplex(10, 'H') | ||
psrf = logconcave_sample(P,distribution,5000,2000) | ||
cat("psrf = ") | ||
cat(psrf) | ||
cat("\n") | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# VolEsti (volume computation and sampling library) | ||
|
||
# Copyright (c) 2012-2020 Vissarion Fisikopoulos | ||
# Copyright (c) 2018-2020 Apostolos Chalkis | ||
# Copyright (c) 2020-2020 Marios Papachristou | ||
|
||
# Contributed and/or modified by Marios Papachristou, as part of Google Summer of Code 2020 program. | ||
|
||
# Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
# Example script for using the logconcave sampling methods | ||
|
||
# Import required libraries | ||
library(ggplot2) | ||
library(volesti) | ||
|
||
# Sampling from logconcave density example | ||
|
||
# Helper function | ||
norm_vec <- function(x) sqrt(sum(x^2)) | ||
|
||
# Negative log-probability oracle | ||
f <- function(x) (norm_vec(x)^2 + sum(x)) | ||
|
||
# Negative log-probability gradient oracle | ||
grad_f <- function(x) (2 * x + 1) | ||
|
||
# Interval [-1, 1] | ||
A = matrix(c(1, -1), ncol=1, nrow=2, byrow=TRUE) | ||
b = c(2,1) | ||
|
||
# Create domain of truncation | ||
P <- volesti::Hpolytope(A = A, b = b) | ||
|
||
# Mode of logconcave density | ||
x_min <- c(-0.5) | ||
|
||
# Smoothness and strong-convexity | ||
L <- 2 | ||
m <- 2 | ||
|
||
# Warm start point from truncated Gaussian | ||
warm_start <- sample_points(P, n = 1, random_walk = list("nburns" = 5000), distribution = list("density" = "gaussian", "variance" = 1/L, "mode" = x_min)) | ||
|
||
# Sample points | ||
n_samples <- 20000 | ||
n_burns <- n_samples / 2 | ||
|
||
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "HMC", "step_size" = 0.3, "nburns" = n_burns, "walk_length" = 3, "solver" = "leapfrog", "starting_point" = warm_start[,1]), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m)) | ||
# pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "HMC", "step_size" = 0.3, "nburns" = n_burns, "walk_length" = 3, "solver" = "leapfrog", "starting_point" = warm_start[,1]), distribution = list("density" = "logconcave", "mode" = x_min, "variance" = 1)) | ||
|
||
# Plot histogram | ||
hist(pts, probability=TRUE, breaks = 100) | ||
|
||
cat("Sample mean is: ") | ||
sample_mean <- mean(pts) | ||
cat(sample_mean) | ||
cat("\n") | ||
cat("Sample variance is: ") | ||
sample_variance <- mean((pts - sample_mean)^2) | ||
cat(sample_variance) | ||
cat("\n") |
Oops, something went wrong.