Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Wrap blockmean #1092

Merged
merged 15 commits into from
Mar 23, 2021
1 change: 1 addition & 0 deletions doc/api/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@ Operations on tabular data:
.. autosummary::
:toctree: generated

blockmean
blockmedian
surface

Expand Down
1 change: 1 addition & 0 deletions pygmt/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from pygmt.session_management import begin as _begin
from pygmt.session_management import end as _end
from pygmt.src import (
blockmean,
blockmedian,
config,
grd2cpt,
Expand Down
2 changes: 1 addition & 1 deletion pygmt/src/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
"""
# pylint: disable=import-outside-toplevel
from pygmt.src.basemap import basemap
from pygmt.src.blockmedian import blockmedian
from pygmt.src.blockm import blockmean, blockmedian
from pygmt.src.coast import coast
from pygmt.src.colorbar import colorbar
from pygmt.src.config import config
Expand Down
146 changes: 118 additions & 28 deletions pygmt/src/blockmedian.py → pygmt/src/blockm.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
blockmedian - Block average (x,y,z) data tables by median estimation.
blockm - Block average (x,y,z) data tables by mean or median estimation.
"""
import pandas as pd
from pygmt.clib import Session
Expand All @@ -15,6 +15,122 @@
)


def _blockm(block_method, table, outfile, **kwargs):
r"""
Block average (x,y,z) data tables by mean or median estimation.

Reads arbitrarily located (x,y,z) triples [or optionally weighted
quadruples (x,y,z,w)] from a table and writes to the output a mean or
median (depending on ``block_method``) position and value for every
non-empty block in a grid region defined by the ``region`` and ``spacing``
parameters.

Parameters
----------
block_method : str
Name of the GMT module to call. Must be "blockmean" or "blockmedian".

Returns
-------
output : pandas.DataFrame or None
Return type depends on whether the ``outfile`` parameter is set:

- :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile``
is not set
- None if ``outfile`` is set (filtered output will be stored in file
set by ``outfile``)
"""

kind = data_kind(table)
with GMTTempFile(suffix=".csv") as tmpfile:
with Session() as lib:
if kind == "matrix":
if not hasattr(table, "values"):
raise GMTInvalidInput(f"Unrecognized data type: {type(table)}")
file_context = lib.virtualfile_from_matrix(table.values)
elif kind == "file":
if outfile is None:
raise GMTInvalidInput("Please pass in a str to 'outfile'")
file_context = dummy_context(table)
else:
raise GMTInvalidInput(f"Unrecognized data type: {type(table)}")

with file_context as infile:
if outfile is None:
outfile = tmpfile.name
arg_str = " ".join([infile, build_arg_string(kwargs), "->" + outfile])
lib.call_module(module=block_method, args=arg_str)

# Read temporary csv output to a pandas table
if outfile == tmpfile.name: # if user did not set outfile, return pd.DataFrame
result = pd.read_csv(tmpfile.name, sep="\t", names=table.columns)
elif outfile != tmpfile.name: # return None if outfile set, output in outfile
result = None

return result


@fmt_docstring
@use_alias(
I="spacing",
R="region",
V="verbose",
a="aspatial",
f="coltypes",
r="registration",
)
@kwargs_to_strings(R="sequence")
def blockmean(table, outfile=None, **kwargs):
r"""
Block average (x,y,z) data tables by mean estimation.

Reads arbitrarily located (x,y,z) triples [or optionally weighted
quadruples (x,y,z,w)] from a table and writes to the output a mean
position and value for every non-empty block in a grid region defined by
the ``region`` and ``spacing`` parameters.

Full option list at :gmt-docs:`blockmean.html`

{aliases}

Parameters
----------
table : pandas.DataFrame or str
Either a pandas dataframe with (x, y, z) or (longitude, latitude,
elevation) values in the first three columns, or a file name to an
ASCII data table.

spacing : str
*xinc*\[\ *unit*\][**+e**\|\ **n**]
[/*yinc*\ [*unit*][**+e**\|\ **n**]].
*xinc* [and optionally *yinc*] is the grid spacing.

region : str or list
*xmin/xmax/ymin/ymax*\[\ **+r**\][**+u**\ *unit*].
Specify the region of interest.

outfile : str
Required if ``table`` is a file. The file name for the output ASCII
file.

{V}
{a}
{f}
{r}

Returns
-------
output : pandas.DataFrame or None
Return type depends on whether the ``outfile`` parameter is set:

- :class:`pandas.DataFrame` table with (x, y, z) columns if ``outfile``
is not set
- None if ``outfile`` is set (filtered output will be stored in file
set by ``outfile``)
"""
return _blockm(block_method="blockmean", table=table, outfile=outfile, **kwargs)


@fmt_docstring
@use_alias(
I="spacing",
Expand Down Expand Up @@ -73,30 +189,4 @@ def blockmedian(table, outfile=None, **kwargs):
- None if ``outfile`` is set (filtered output will be stored in file
set by ``outfile``)
"""
kind = data_kind(table)
with GMTTempFile(suffix=".csv") as tmpfile:
with Session() as lib:
if kind == "matrix":
if not hasattr(table, "values"):
raise GMTInvalidInput(f"Unrecognized data type: {type(table)}")
file_context = lib.virtualfile_from_matrix(table.values)
elif kind == "file":
if outfile is None:
raise GMTInvalidInput("Please pass in a str to 'outfile'")
file_context = dummy_context(table)
else:
raise GMTInvalidInput(f"Unrecognized data type: {type(table)}")

with file_context as infile:
if outfile is None:
outfile = tmpfile.name
arg_str = " ".join([infile, build_arg_string(kwargs), "->" + outfile])
lib.call_module(module="blockmedian", args=arg_str)

# Read temporary csv output to a pandas table
if outfile == tmpfile.name: # if user did not set outfile, return pd.DataFrame
result = pd.read_csv(tmpfile.name, sep="\t", names=table.columns)
elif outfile != tmpfile.name: # return None if outfile set, output in outfile
result = None

return result
return _blockm(block_method="blockmedian", table=table, outfile=outfile, **kwargs)
78 changes: 78 additions & 0 deletions pygmt/tests/test_blockmean.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
"""
Tests for blockmean.
"""
import os

import numpy.testing as npt
import pandas as pd
import pytest
from pygmt import blockmean
from pygmt.datasets import load_sample_bathymetry
from pygmt.exceptions import GMTInvalidInput
from pygmt.helpers import GMTTempFile, data_kind


def test_blockmean_input_dataframe():
"""
Run blockmean by passing in a pandas.DataFrame as input.
"""
dataframe = load_sample_bathymetry()
output = blockmean(table=dataframe, spacing="5m", region=[245, 255, 20, 30])
assert isinstance(output, pd.DataFrame)
assert all(dataframe.columns == output.columns)
assert output.shape == (5849, 3)
npt.assert_allclose(output.iloc[0], [245.888877, 29.978707, -384.0])

return output


def test_blockmean_wrong_kind_of_input_table_matrix():
"""
Run blockmean using table input that is not a pandas.DataFrame but still a
matrix.
"""
dataframe = load_sample_bathymetry()
invalid_table = dataframe.values
assert data_kind(invalid_table) == "matrix"
with pytest.raises(GMTInvalidInput):
blockmean(table=invalid_table, spacing="5m", region=[245, 255, 20, 30])


def test_blockmean_wrong_kind_of_input_table_grid():
"""
Run blockmean using table input that is not a pandas.DataFrame or file but
a grid.
"""
dataframe = load_sample_bathymetry()
invalid_table = dataframe.bathymetry.to_xarray()
assert data_kind(invalid_table) == "grid"
with pytest.raises(GMTInvalidInput):
blockmean(table=invalid_table, spacing="5m", region=[245, 255, 20, 30])


def test_blockmean_input_filename():
"""
Run blockmean by passing in an ASCII text file as input.
"""
with GMTTempFile() as tmpfile:
output = blockmean(
table="@tut_ship.xyz",
spacing="5m",
region=[245, 255, 20, 30],
outfile=tmpfile.name,
)
assert output is None # check that output is None since outfile is set
assert os.path.exists(path=tmpfile.name) # check that outfile exists at path
output = pd.read_csv(tmpfile.name, sep="\t", header=None)
assert output.shape == (5849, 3)
npt.assert_allclose(output.iloc[0], [245.888877, 29.978707, -384.0])

return output


def test_blockmean_without_outfile_setting():
"""
Run blockmean by not passing in outfile parameter setting.
"""
with pytest.raises(GMTInvalidInput):
blockmean(table="@tut_ship.xyz", spacing="5m", region=[245, 255, 20, 30])
maxrjones marked this conversation as resolved.
Show resolved Hide resolved