Skip to content

Commit

Permalink
Improve the workarounds for handling pandas nullable dtypes in pandas…
Browse files Browse the repository at this point in the history
…<=2.1 (#3596)
  • Loading branch information
seisman authored Dec 12, 2024
1 parent 112db17 commit 4d9f897
Showing 1 changed file with 25 additions and 12 deletions.
37 changes: 25 additions & 12 deletions pygmt/clib/conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,19 +168,32 @@ def _to_numpy(data: Any) -> np.ndarray:
"date64[ms][pyarrow]": "datetime64[ms]",
}

# The dtype for the input object.
dtype = getattr(data, "dtype", getattr(data, "type", ""))
# The numpy dtype for the result numpy array, but can be None.
numpy_dtype = dtypes.get(str(dtype))

# pandas numeric dtypes were converted to np.object_ dtype prior pandas 2.2, and are
# converted to suitable NumPy dtypes since pandas 2.2. Refer to the following link
# for details: https://pandas.pydata.org/docs/whatsnew/v2.2.0.html#to-numpy-for-numpy-nullable-and-arrow-types-converts-to-suitable-numpy-dtype
#
# Workarounds for pandas < 2.2. Following SPEC 0, pandas 2.1 should be dropped in
# 2025 Q3, so it's likely we can remove the workaround in PyGMT v0.17.0.
if (
hasattr(data, "isna")
and data.isna().any()
and Version(pd.__version__) < Version("2.2")
):
# Workaround for dealing with pd.NA with pandas < 2.2.
# Bug report at: https://github.com/GenericMappingTools/pygmt/issues/2844
# Following SPEC0, pandas 2.1 will be dropped in 2025 Q3, so it's likely
# we can remove the workaround in PyGMT v0.17.0.
array = np.ascontiguousarray(data.astype(float))
else:
vec_dtype = str(getattr(data, "dtype", getattr(data, "type", "")))
array = np.ascontiguousarray(data, dtype=dtypes.get(vec_dtype))
Version(pd.__version__) < Version("2.2") # pandas < 2.2 only.
and hasattr(data, "dtype") # NumPy array or pandas objects only.
and hasattr(data.dtype, "numpy_dtype") # pandas dtypes only.
and data.dtype.kind in "iuf" # Numeric dtypes only.
): # pandas Series/Index with pandas nullable numeric dtypes.
# The numpy dtype of the result numpy array.
numpy_dtype = data.dtype.numpy_dtype
if getattr(data, "hasnans", False):
if data.dtype.kind in "iu":
# Integers with missing values are converted to float64.
numpy_dtype = np.float64
data = data.to_numpy(na_value=np.nan)

array = np.ascontiguousarray(data, dtype=numpy_dtype)

# Check if a np.object_ array can be converted to np.str_.
if array.dtype == np.object_:
Expand Down

0 comments on commit 4d9f897

Please sign in to comment.