Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: using enzeptional via pypi. #252

Merged
merged 1 commit into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 0 additions & 106 deletions examples/enzeptional/data.csv

This file was deleted.

165 changes: 116 additions & 49 deletions examples/enzeptional/example_enzeptional.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,16 @@
import logging
import pandas as pd
from typing import Tuple, List, Optional
from gt4sd.frameworks.enzeptional.processing import HFandTAPEModelUtility
from gt4sd.frameworks.enzeptional.core import SequenceMutator, EnzymeOptimizer
from gt4sd.frameworks.enzeptional import (
EnzymeOptimizer,
SequenceMutator,
SequenceScorer,
CrossoverGenerator,
HuggingFaceEmbedder,
HuggingFaceModelLoader,
HuggingFaceTokenizerLoader,
SelectionGenerator,
)
from gt4sd.configuration import GT4SDConfiguration, sync_algorithm_with_s3


Expand All @@ -17,23 +25,33 @@ def initialize_environment(model = "feasibility") -> Tuple[str, Optional[str]]:
"""
configuration = GT4SDConfiguration.get_instance()
sync_algorithm_with_s3("proteins/enzeptional/scorers", module="properties")
return f"{configuration.gt4sd_local_cache_path}/properties/proteins/enzeptional/scorers/feasibility/model.pkl"


def load_experiment_parameters() -> Tuple[List, List, List, List]:
scorer = f"{configuration.gt4sd_local_cache_path}/properties/proteins/enzeptional/scorers/{model}/model.pkl"
if model == "feasibility":
return scorer, None
else:
scaler = f"{configuration.gt4sd_local_cache_path}/properties/proteins/enzeptional/scorers/{model}/scaler.pkl"
return scorer, scaler

def load_experiment_parameters(model="feasibility") -> Tuple[List, List, List, List]:
"""Load experiment parameters from a CSV file."""
df = pd.read_csv("data.csv").iloc[1]
return df["substrates"], df["products"], df["sequences"], eval(df["intervals"])
substrate_smiles = "NC1=CC=C(N)C=C1"
product_smiles = "CNC1=CC=C(NC(=O)C2=CC=C(C=C2)C(C)=O)C=C1"
intervals = [(5, 10), (20, 25)]
sample_sequence = "MSKLLMIGTGPVAIDQFLTRYEASCQAYKDMHQDQQLSSQFNTNLFEGDKALVTKFLEINRTLS"
scorer_path, scaler_path = initialize_environment(model)
return substrate_smiles, product_smiles, sample_sequence, intervals, scorer_path, scaler_path


def setup_optimizer(
substrate_smiles: str,
product_smiles: str,
sample_sequence: str,
intervals: List[List[int]],
scorer_path: str,
scaler_path: str,
intervals: List[List[int]],
concat_order: List[str],
top_k: int,
batch_size: int,
use_xgboost_scorer: bool
):
"""Set up and return the optimizer with all necessary components configured
Expand All @@ -44,48 +62,82 @@ def setup_optimizer(
product_smiles (str): SMILES representation of the
product.
sample_sequence (str): The initial protein sequence.
intervals (List[List[int]]): Intervals for mutation.
scorer_path (str): File path to the scoring model.
scaler_path (str): Path to the scaller in case you are usinh the Kcat model.
intervals (List[List[int]]): Intervals for mutation.
concat_order (List[str]): Order of concatenating embeddings.
top_k (int): Number of top amino acids to use to create mutants.
batch_size (int): Batch size.
use_xgboost_scorer (bool): flag to specify if the fitness function is the Kcat.

Returns:
Initialized optmizer
"""
model_tokenizer_paths = "facebook/esm2_t33_650M_UR50D"
chem_paths = "seyonec/ChemBERTa-zinc-base-v1"
language_model_path = "facebook/esm2_t33_650M_UR50D"
tokenizer_path = "facebook/esm2_t33_650M_UR50D"
chem_model_path = "seyonec/ChemBERTa-zinc-base-v1"
chem_tokenizer_path = "seyonec/ChemBERTa-zinc-base-v1"

model_loader = HuggingFaceModelLoader()
tokenizer_loader = HuggingFaceTokenizerLoader()

protein_model = HuggingFaceEmbedder(
model_loader=model_loader,
tokenizer_loader=tokenizer_loader,
model_path=language_model_path,
tokenizer_path=tokenizer_path,
cache_dir=None,
device="cpu",
)

protein_model = HFandTAPEModelUtility(
embedding_model_path=model_tokenizer_paths, tokenizer_path=model_tokenizer_paths
chem_model = HuggingFaceEmbedder(
model_loader=model_loader,
tokenizer_loader=tokenizer_loader,
model_path=chem_model_path,
tokenizer_path=chem_tokenizer_path,
cache_dir=None,
device="cpu",
)

mutation_config = {
"type": "language-modeling",
"embedding_model_path": model_tokenizer_paths,
"tokenizer_path": model_tokenizer_paths,
"unmasking_model_path": model_tokenizer_paths,
"embedding_model_path": language_model_path,
"tokenizer_path": tokenizer_path,
"unmasking_model_path": language_model_path,
}

mutator = SequenceMutator(sequence=sample_sequence, mutation_config=mutation_config)
optimizer_config = {
"sequence": sample_sequence,
"protein_model": protein_model,
"substrate_smiles": substrate_smiles,
"product_smiles": product_smiles,
"chem_model_path": chem_paths,
"chem_tokenizer_path": chem_paths,
"scorer_filepath": scorer_path,
"mutator": mutator,
"intervals": intervals,
"batch_size": 5,
"top_k": 3,
"selection_ratio": 0.25,
"perform_crossover": True,
"crossover_type": "single_point",
"concat_order": concat_order,
"scaler_filepath": scaler_path,
"use_xgboost_scorer": use_xgboost_scorer
}
mutator.set_top_k(top_k)

scorer = SequenceScorer(
protein_model=protein_model,
scorer_filepath=scorer_path,
use_xgboost=use_xgboost_scorer,
scaler_filepath=scaler_path,
)

selection_generator = SelectionGenerator()
crossover_generator = CrossoverGenerator()

optimizer_config = dict(
sequence=sample_sequence,
mutator=mutator,
scorer=scorer,
intervals=intervals,
substrate_smiles=substrate_smiles,
product_smiles=product_smiles,
chem_model=chem_model,
selection_generator=selection_generator,
crossover_generator=crossover_generator,
concat_order=concat_order,
batch_size=batch_size,
selection_ratio=0.25,
perform_crossover=True,
crossover_type="single_point",
pad_intervals=False,
minimum_interval_length=8,
seed=42,
)
return EnzymeOptimizer(**optimizer_config)


Expand All @@ -106,37 +158,52 @@ def optimize_sequences(optimizer):
def main_kcat():
"""Optimization using Kcat model"""
logging.basicConfig(level=logging.INFO)
scorer_path, scaler_path = initialize_environment(model="kcat")
concat_order, use_xgboost_scorer = ["substrate", "sequence"], True
(
concat_order = ["substrate", "sequence"]
use_xgboost_scorer=True
top_k=2
batch_size=2
substrate_smiles, product_smiles, sample_sequence, intervals, scorer_path, scaler_path = load_experiment_parameters("kcat")
optimizer = setup_optimizer(
substrate_smiles,
product_smiles,
sample_sequence,
scorer_path,
scaler_path,
intervals,
) = load_experiment_parameters()
optimizer = setup_optimizer(
substrate_smiles, product_smiles, sample_sequence, intervals, scorer_path, scaler_path, concat_order, use_xgboost_scorer
concat_order,
top_k,
batch_size,
use_xgboost_scorer
)

optimized_sequences, iteration_info = optimize_sequences(optimizer)
logging.info("Optimization completed.")


def main_feasibility():
"""Optimization using Feasibility model"""
logging.basicConfig(level=logging.INFO)
scorer_path, scaler_path = initialize_environment()
concat_order, use_xgboost_scorer = ["substrate", "sequence", "product"], False
(
concat_order = ["substrate", "sequence", "product"]
use_xgboost_scorer=False
top_k=2
batch_size=2
substrate_smiles, product_smiles, sample_sequence, intervals, scorer_path, scaler_path = load_experiment_parameters("feasilibity")
optimizer = setup_optimizer(
substrate_smiles,
product_smiles,
sample_sequence,
scorer_path,
scaler_path,
intervals,
) = load_experiment_parameters()
optimizer = setup_optimizer(
substrate_smiles, product_smiles, sample_sequence, intervals, scorer_path, scaler_path, concat_order, use_xgboost_scorer
concat_order,
top_k,
batch_size,
use_xgboost_scorer
)

optimized_sequences, iteration_info = optimize_sequences(optimizer)
logging.info("Optimization completed.")

if __name__ == "__main__":
main()
main_feasibility()
main_kcat()
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ setuptools==69.5.1
accelerate>=0.12,<0.20.0
datasets>=1.11.0
diffusers<=0.6.0
enzeptional>=1.0.0
importlib-metadata>=1.7.0,<5.0.0 # temporary: https://github.com/python/importlib_metadata/issues/409
importlib-resources>=5.10.0
ipaddress>=1.0.23
Expand Down
4 changes: 4 additions & 0 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ install_requires =
accelerate
datasets
diffusers
enzeptional
importlib_metadata
importlib_resources
ipaddress
Expand Down Expand Up @@ -293,4 +294,7 @@ ignore_missing_imports = True
ignore_missing_imports = True

[mypy-pydantic_settings.*]
ignore_missing_imports = True

[mypy-enzeptional.*]
ignore_missing_imports = True
16 changes: 14 additions & 2 deletions src/gt4sd/frameworks/enzeptional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,5 +25,17 @@
Module for enzyme optimization.
"""

from .core import EnzymeOptimizer # noqa: F401
from enzeptional import ( # noqa: F401
EnzymeOptimizer,
SequenceMutator,
SequenceScorer,
CrossoverGenerator,
HuggingFaceEmbedder,
HuggingFaceModelLoader,
HuggingFaceTokenizerLoader,
SelectionGenerator,
mutate_sequence_with_variant,
round_up,
sanitize_intervals,
sanitize_intervals_with_padding,
)
Loading
Loading