forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hybrid Script] Inter-function call supported! (apache#2287)
- Loading branch information
Showing
7 changed files
with
303 additions
and
184 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
"""Intrinsics of TVM-Python Hybrid Script for Python compilation time | ||
semantic support.""" | ||
|
||
from .. import api as _api | ||
from .. import expr as _expr | ||
from .. import make as _make | ||
from ..container import Array | ||
from .. import ir_pass | ||
from ..stmt import For | ||
from .util import _internal_assert | ||
|
||
#pylint: disable=redefined-builtin | ||
|
||
LOOP_INTRIN = { | ||
'range' : For.Serial, | ||
'unroll' : For.Unrolled, | ||
'parallel' : For.Parallel, | ||
'vectorize': For.Vectorized, | ||
} | ||
|
||
def _range(annotation, args): | ||
"""Handling TVM loop types""" | ||
n = len(args) | ||
if n == 1: | ||
low, ext = _api.const(0, dtype='int32'), args[0] | ||
else: | ||
_internal_assert(n == 2, "A loop intrinsic should only have 1 or 2 arguments!") | ||
low, ext = args[0], args[1] | ||
if not ir_pass.Equal(low, _api.const(0, dtype='int32')): | ||
ext = ext - low | ||
for_type = LOOP_INTRIN[annotation] | ||
iter_var = None | ||
return iter_var, low, ext, for_type | ||
|
||
|
||
range = unroll = vectorize = parallel = _range #pylint: disable=invalid-name | ||
|
||
|
||
def bind(func_id, args): | ||
"""Handling TVM thread binding""" | ||
_internal_assert(func_id == "bind", "This function cannot be directly invoked!") | ||
_internal_assert(len(args) == 2, "A loop bind should only have 2 arguments!") | ||
_internal_assert(isinstance(args[0], str), \ | ||
"A loop bind's first argument should be a string!") | ||
iter_var = _api.thread_axis(args[0]) | ||
low, ext = _api.const(0), args[1] | ||
for_type = None | ||
return iter_var, low, ext, for_type | ||
|
||
|
||
def _math_intrin(func_id, args): | ||
from .. import intrin | ||
return getattr(intrin, func_id)(*args) | ||
|
||
sqrt = log = exp = tanh = sigmoid = power = popcount = _math_intrin #pylint: disable=invalid-name | ||
|
||
|
||
def _min_max(func_id, args): | ||
_internal_assert(len(args) == 2, "Max/Min function should have 2 elements") | ||
return getattr(_make, func_id.title())(args[0], args[1]) | ||
|
||
|
||
min = max = _min_max #pylint: disable=invalid-name | ||
|
||
|
||
def _allocate_tensor(func_id, args): | ||
"""Handling TVM tensor allocation. | ||
You may refer hybrid.intrin.allocate for more details.""" | ||
n = len(args) | ||
_internal_assert(isinstance(_api.convert(args[0]), Array), \ | ||
"allocate's first argument should be a tuple of shape!") | ||
shape = args[0] | ||
for i in shape: | ||
_internal_assert(isinstance(i, _expr.Expr), "The shape should be an expression") | ||
if n > 1: | ||
_internal_assert(isinstance(args[1], str), | ||
"The data type should be an str") | ||
_internal_assert(args[1].startswith('int') or args[1].startswith('float'), \ | ||
"The data type should be either int or float!") | ||
dtype = args[1] | ||
else: | ||
dtype = 'float32' | ||
if n > 2: | ||
_internal_assert(isinstance(args[2], str), \ | ||
"The data scope should be an string") | ||
_internal_assert(func_id != 'output_tensor', "Output tensor cannot specify scope") | ||
scope = args[2] | ||
else: | ||
scope = 'global' if func_id != 'output_tensor' else 'output' | ||
return (shape, dtype, scope) | ||
|
||
output_tensor = allocate = _allocate_tensor #pylint: disable=invalid-name |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.