Skip to content

FreemanX/Machine-Learning-Notes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Notes

Notebook 00 Python Basics

  • NumPy
    • NumPy array manipulation
    • NumPy calculation (linalg, matmul, etc.)
  • Matplotlib
    • Simple plot
    • Plot styles
    • Subplots
    • 3D plot

Notebook 01 Regression

  • Linear Model
  • LASSO and Ridge

Notebook 02 Feature

  • Feature exploration and visualization

Notebook 03 Bias and Variance

  • Bias and variance decomposition

Notebook 04 Maximum Likelihood Estimation

  • MLE on Normal Distribution
  • Compare biased and unbiased estimators

Notebook 05 Optimization Methods

  • Gradient decent
  • Newton's method

Notebook 06 Classification

  • Perceptron
  • Logistic Regression
  • Softmax Regression

Notebook 07 Nonparametric Modeling

  • kNN
  • Decision Tree
  • The curse of dimensionality

Notebook 08 Ensemble Learning

  • Bootstrap Aggregation (Bagging)
  • Random Forest Regression
  • Adaptive Boosting (AdaBoost)
  • Gradient Boost

Notebook 09 Neural Learning

Notebook 10 Unsupervised Learning

  • PCA
  • k-Means

Notebook 11 PyTorch

About

Notes took when I was studying Machine Learning

Resources

Stars

Watchers

Forks