Skip to content

Commit

Permalink
Chronos : add [how to tune a forecaster model] notebook (intel-analyt…
Browse files Browse the repository at this point in the history
…ics#5399)

* add how_to_tune_a_forecaster_model notebook

* modify step1: data preparation

* update based how to train

* modify a bug of summary

* update based on comment

* move to howto

* fix typo

* add file

* update based on comments

* rename the tile
  • Loading branch information
rnwang04 authored and ForJadeForest committed Sep 20, 2022
1 parent 0da86d0 commit eda0a35
Show file tree
Hide file tree
Showing 3 changed files with 308 additions and 2 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/docs/readthedocs/source/doc/Chronos/Howto/how_to_tune_forecaster_model.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![image.png]()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tune forecaster on single node\n",
"\n",
"\n",
"## Introduction\n",
"\n",
"In this guidance, we demonstrate **how to tune forecaster on single node**. In tuning process, forecaster will find the best hyperparameter combination among user-defined search space, which is a common process if users pursue a forecaster with higher accuracy.\n",
"\n",
"Chronos support forecasting model's hyperparameter tuning in 2 sepaerated APIs (i.e. `Forecaster.tune` and `AutoTSEstimator`) for users with different demands:\n",
"\n",
"| |`Forecaster.tune`|`AutoTSEstimator`|\n",
"|-------------------|:---------------:|:---------------:|\n",
"|Single Node |✓ |✓ |\n",
"|Cluster |X |✓ |\n",
"|Performance-awared Tuning|✓ |X |\n",
"|Feature Selection |X |✓ |\n",
"|Customized Model |X |✓ |\n",
"\n",
"`Forecaster.tune` provides easier and more stright-forward API for users who are familiar with Chronos forecasters, it is recommened to try this method first.\n",
"\n",
"We will take `AutoformerForecaster` and nyc_taxi dataset as an example in this guide."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"Before we begin, we need to install chronos if it isn’t already available, we choose to use pytorch as deep learning backend."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install --pre --upgrade bigdl-chronos[pytorch,automl]\n",
"!pip uninstall -y torchtext # uninstall torchtext to avoid version conflict\n",
"exit()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data preparation\n",
"\n",
"First, we load the nyc taxi dataset.\n",
"\n",
"Currently, tune func only support **Numpy Ndarray input**."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"from bigdl.chronos.data.repo_dataset import get_public_dataset\n",
"\n",
"def get_tsdata():\n",
" name = 'nyc_taxi'\n",
" tsdata_train, tsdata_valid, _ = get_public_dataset(name)\n",
" stand_scaler = StandardScaler()\n",
" for tsdata in [tsdata_train, tsdata_valid]:\n",
" tsdata.impute(mode=\"linear\")\\\n",
" .scale(stand_scaler, fit=(tsdata is tsdata_train))\n",
" return tsdata_train, tsdata_valid\n",
"\n",
"tsdata_train, tsdata_valid = get_tsdata()\n",
"\n",
"input_feature_num = 1\n",
"output_feature_num = 1\n",
"lookback = 20\n",
"horizon = 1\n",
"label_len = 10\n",
"\n",
"train_data = tsdata_train.roll(lookback=lookback, horizon=horizon, label_len=label_len, time_enc=True).to_numpy()\n",
"val_data = tsdata_valid.roll(lookback=lookback, horizon=horizon, label_len=label_len,time_enc=True).to_numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"train_data and val_data is compose of (x, y, x_enc, y_enc) as we set `time_enc=True` which is only necessary for Autoformer."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tuning\n",
"\n",
"The first step of tuning a forecaster is to define forecaster with space parameters.\n",
"\n",
"There are several common space choices:\n",
"\n",
"`space.Categorical` : search space for hyperparameters which are categorical, e.g. a = space.Categorical('a', 'b', 'c', 'd')\n",
"\n",
"`space.Real` : search space for numeric hyperparameter that takes continuous values, e.g. learning_rate = space.Real(0.01, 0.1, log=True)\n",
"\n",
"`space.Int` : search space for numeric hyperparameter that takes integer values, e.g. range = space.Int(0, 100)\n",
"\n",
"How to change these hyperparameters might be tricky and highly based on experience, but lr, d_model, d_ff and layers or similar parameters usually has a great impact on performance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import bigdl.nano.automl.hpo.space as space\n",
"from bigdl.chronos.forecaster.autoformer_forecaster import AutoformerForecaster\n",
"\n",
"autoformer = AutoformerForecaster(input_feature_num=input_feature_num,\n",
" output_feature_num=output_feature_num,\n",
" past_seq_len=lookback,\n",
" future_seq_len=horizon,\n",
" label_len=label_len,\n",
" seed=1024,\n",
" freq='t',\n",
" loss=\"mse\",\n",
" metrics=['mae', 'mse', 'mape'],\n",
" lr = space.Real(0.0001, 0.1, log=True),\n",
" d_model=space.Categorical(32, 64, 128, 256),\n",
" d_ff=space.Categorical(32, 64, 128, 256),\n",
" e_layers=space.Categorical(1,2),\n",
" n_head=space.Categorical(1,8))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then just call `tune` on the training data and validation data!\n",
"\n",
"In addition to data, there are three parameters which **need** to be specified : n_trials, target_metric and direction(or directions for multi-objective HPO).\n",
"\n",
"`n_trials`: number of trials to run. The more trials, the longer the running time, the better results.\n",
"\n",
"`target_metric`: the target metric to optimize, a string or an instance of torchmetrics.metric.Metric, default to 'mse'. If you want to try a multi-objective HPO, you need to pass in a list, for example ['mse', 'latency'] in which latency is a built-in metric for performance.\n",
"\n",
"`direction`: in which direction to optimize the target metric, \"maximize\" or \"minimize\", default to \"minimize\". If you want to try a multi-objective HPO, you need to set direction=None, and specify directions which is a list containing direction for each metric, for example ['minimize', 'minimize'].\n",
"\n",
"there are other two parameters which you **may** change their default values : epochs and batch_size."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"autoformer.tune(train_data, validation_data=val_data,\n",
" n_trials=10, target_metric='mse', direction=\"minimize\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, you can see the whole trial history by calling `search_summary()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"autoformer.search_summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After `tune`, the model parameters of autoformer is **initialized** according to the best trial parameters. You need to fit the model again."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"autoformer.fit(train_data, epochs=4, batch_size=32)\n",
"# evaluate on val set\n",
"evaluate = autoformer.evaluate(val_data)\n",
"print(evaluate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save and load(Optional)\n",
"\n",
"After tuning and fitting, you can save your model by calling `save` with a filename."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"autoformer.save(checkpoint_file=\"best.ckpt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, when you need to load the model weights, just call `load()` with corresponding filename."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"autoformer.load(checkpoint_file=\"best.ckpt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or if there is a new session, just define a new forecaster with **six necessary parameters: input_feature_num, output_feature_num, past_seq_len, future_seq_len, label_len, and freq**, then `load` with corresponding filename."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"new_autoformer = AutoformerForecaster(input_feature_num=input_feature_num,\n",
" output_feature_num=output_feature_num,\n",
" past_seq_len=lookback,\n",
" future_seq_len=horizon,\n",
" label_len=label_len,\n",
" freq='s')\n",
"new_autoformer.load(checkpoint_file=\"best.ckpt\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.10 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
8 changes: 7 additions & 1 deletion docs/readthedocs/source/doc/Chronos/Howto/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,13 +4,19 @@ How-to guides are bite-sized, executable examples where users could check when m

Forecasting
-------------------------
* `Train forcaster on single node <how_to_train_forecaster_on_one_node.html>`__
* `Train forecaster on single node <how_to_train_forecaster_on_one_node.html>`__

In this guidance, **we demonstrate how to train forecasters on one node**. In the training process, forecaster will learn the pattern (like the period, scale...) in history data. Although Chronos supports training on a cluster, it's highly recommeneded to try one node first before allocating a cluster to make life easier.

* `Tune forecaster on single node <how_to_tune_forecaster_model.html>`__

In this guidance, we demonstrate **how to tune forecaster on single node**. In tuning process, forecaster will find the best hyperparameter combination among user-defined search space, which is a common process if users pursue a forecaster with higher accuracy.


.. toctree::
:maxdepth: 1
:hidden:

how_to_train_forecaster_on_one_node

how_to_tune_forecaster_model
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ def tune(self,
def search_summary(self):
# add tuning check
invalidOperationError(self.use_hpo, "No search summary when HPO is disabled.")
return self.trainer.search_summary()
return self.tune_trainer.search_summary()

def fit(self, data, validation_data=None, epochs=1, batch_size=32, validation_mode='output',
earlystop_patience=1, use_trial_id=None):
Expand Down

0 comments on commit eda0a35

Please sign in to comment.