Skip to content

Commit

Permalink
support standard scaler for shards (intel-analytics#5716)
Browse files Browse the repository at this point in the history
* support standard scaler
  • Loading branch information
dding3 authored and ForJadeForest committed Sep 20, 2022
1 parent 38c6fe5 commit c2ecf64
Show file tree
Hide file tree
Showing 2 changed files with 56 additions and 0 deletions.
42 changes: 42 additions & 0 deletions python/orca/src/bigdl/orca/data/transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from bigdl.orca.data import SparkXShards
from bigdl.orca import OrcaContext
from pyspark.ml.feature import MinMaxScaler as SparkMinMaxScaler
from pyspark.ml.feature import StandardScaler as SparkStandardScaler
from pyspark.ml.feature import VectorAssembler as SparkVectorAssembler
from pyspark.ml import Pipeline as SparkPipeline

Expand Down Expand Up @@ -354,3 +355,44 @@ def transform(self, shard):
scaledData = self.scalerModel.transform(df)
data_shards = spark_df_to_pd_sparkxshards(scaledData)
return data_shards


class StandardScaler:
def __init__(self, withMean=False, withStd=True, inputCol=None, outputCol=None):
self.withMean = withMean
self.withStd = withStd
self.inputCol = inputCol
self.outputCol = outputCol
self.scaler = None
self.scalerModel = None
if inputCol:
self.__createScaler__()

def __createScaler__(self):
invalidInputError(self.inputCol, "inputColumn cannot be empty")
invalidInputError(self.outputCol, "outputColumn cannot be empty")

vecOutputCol = str(uuid.uuid1()) + "x_vec"
assembler = SparkVectorAssembler(inputCols=[self.inputCol], outputCol=vecOutputCol)
scaler = SparkStandardScaler(withMean=self.withMean, withStd=self.withStd,
inputCol=vecOutputCol, outputCol=self.outputCol)
self.scaler = SparkPipeline(stages=[assembler, scaler])

def setInputOutputCol(self, inputCol, outputCol):
self.inputCol = inputCol
self.outputCol = outputCol
self.__createScaler__()

def fit_transform(self, shard):
df = shard.to_spark_df()
self.scalerModel = self.scaler.fit(df)
scaledData = self.scalerModel.transform(df)
data_shards = spark_df_to_pd_sparkxshards(scaledData)
return data_shards

def transform(self, shard):
invalidInputError(self.scalerModel, "Please call fit_transform first")
df = shard.to_spark_df()
scaledData = self.scalerModel.transform(df)
data_shards = spark_df_to_pd_sparkxshards(scaledData)
return data_shards
14 changes: 14 additions & 0 deletions python/orca/test/bigdl/orca/data/test_spark_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from bigdl.dllib.nncontext import *
from bigdl.orca.data.image import write_tfrecord, read_tfrecord
from bigdl.orca.data.utils import *
from bigdl.orca.data.transformer import *


class TestSparkBackend(TestCase):
Expand Down Expand Up @@ -231,6 +232,19 @@ def test_spark_df_to_shards(self):
df = spark.read.csv(file_path)
data_shards = spark_df_to_pd_sparkxshards(df)

def test_minmaxscale_shards(self):
file_path = os.path.join(self.resource_path, "orca/data/csv")
data_shard = bigdl.orca.data.pandas.read_csv(file_path)
scale = MinMaxScaler(inputCol=["sale_price"], outputCol="sale_price_scaled")
transformed_data_shard = scale.fit_transform(data_shard)

def test_standardscale_shards(self):
file_path = os.path.join(self.resource_path, "orca/data/csv")

data_shard = bigdl.orca.data.pandas.read_csv(file_path)
scale = StandardScaler(inputCol="sale_price", outputCol="sale_price_scaled")
transformed_data_shard = scale.fit_transform(data_shard)


if __name__ == "__main__":
pytest.main([__file__])

0 comments on commit c2ecf64

Please sign in to comment.