forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[DLlib] GBT CriteoClickLogsDataset example (intel-analytics#5723)
* init gbt class * remove something unimportant * add readme * change xgb to gbt * use overwrite to save * add text to fix message=Header does not match expected text line=1
- Loading branch information
1 parent
d67152b
commit 8826093
Showing
2 changed files
with
222 additions
and
0 deletions.
There are no files selected for viewing
45 changes: 45 additions & 0 deletions
45
...b/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/gbt/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# Prepare | ||
|
||
## Environment | ||
- Spark 2.4 or Spark 3.1 | ||
- BigDL 2.0 | ||
|
||
## Data Prepare | ||
|
||
### BigDL nightly build | ||
|
||
You can download [here](https://bigdl.readthedocs.io/en/latest/doc/release.html). | ||
For spark 2.4 you need `bigdl-dllib-spark_2.4.6-0.14.0-build_time-jar-with-dependencies.jar` or `bigdl-dllib-spark_3.1.2-0.14.0-build_time-jar-with-dependencies.jar` for spark 3.1 . | ||
|
||
# GBT On Criteo-click-logs-dataset | ||
## Download data | ||
You can download the criteo-1tb-click-logs-dataset from [here](https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/). Then unzip the files you downloaded and Split 1g data to a folder. | ||
|
||
## Train | ||
``` | ||
spark-submit \ | ||
--master local[4] \ | ||
--conf spark.task.cpus=4 \ | ||
--class com.intel.analytics.bigdl.dllib.example.nnframes.gbt.gbtClassifierTrainingExampleOnCriteoClickLogsDataset \ | ||
--num-executors 2 \ | ||
--executor-cores 4 \ | ||
--executor-memory 4G \ | ||
--driver-memory 10G \ | ||
/path/to/bigdl-dllib-spark_3.1.2-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ | ||
-i /path/to/preprocessed-data/saved -s /path/to/model/saved -I max_Iter -d max_depth | ||
``` | ||
|
||
parameters: | ||
- input_path: String. Path to criteo-click-logs-dataset. | ||
- modelsave_path: String. Path to model to be saved. | ||
- max_iter: Int. Training max iter. | ||
- max_depth: Int. Tree max depth. | ||
|
||
The tree of folder `/path/to/model/saved` is: | ||
``` | ||
/path/to/model/saved | ||
├── data | ||
└── metadata | ||
├── part-00000 | ||
└── _SUCCESS | ||
``` |
177 changes: 177 additions & 0 deletions
177
...gdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
/* | ||
* Copyright 2016 The BigDL Authors. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package com.intel.analytics.bigdl.dllib.example.nnframes.gbt | ||
|
||
import com.intel.analytics.bigdl.dllib.NNContext | ||
import org.apache.spark.ml.classification.GBTClassifier | ||
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler} | ||
import org.apache.spark.sql.types.{LongType, StructField, StructType} | ||
import org.apache.spark.sql.{Row, SQLContext} | ||
import org.slf4j.{Logger, LoggerFactory} | ||
import scopt.OptionParser | ||
|
||
|
||
class Task extends Serializable { | ||
|
||
val default_missing_value = "-999" | ||
|
||
def rowToLibsvm(row: Row): String = { | ||
0 until row.length flatMap { | ||
case 0 => Some(row(0).toString) | ||
case i if row(i) == null => Some(default_missing_value) | ||
case i => Some((if (i < 14) row(i) | ||
else java.lang.Long.parseLong(row(i).toString, 16)).toString) | ||
} mkString " " | ||
} | ||
} | ||
|
||
case class Params( | ||
trainingDataPath: String = "/host/data", | ||
modelSavePath: String = "/host/data/model", | ||
maxIter: Int = 100, | ||
maxDepth: Int = 2 | ||
) | ||
|
||
object gbtClassifierTrainingExampleOnCriteoClickLogsDataset { | ||
|
||
val feature_nums = 39 | ||
|
||
def main(args: Array[String]): Unit = { | ||
|
||
val log: Logger = LoggerFactory.getLogger(this.getClass) | ||
|
||
|
||
// parse params and set value | ||
|
||
val params = parser.parse(args, new Params).get | ||
val trainingDataPath = params.trainingDataPath // path to data | ||
val modelSavePath = params.modelSavePath // save model to this path | ||
val maxIter = params.maxIter // train max Iter | ||
val maxDepth = params.maxDepth // tree max depth | ||
|
||
val sc = NNContext.initNNContext() | ||
val spark = SQLContext.getOrCreate(sc) | ||
|
||
val task = new Task() | ||
|
||
val tStart = System.nanoTime() | ||
// read csv files to dataframe | ||
var df = spark.read.option("header", "false"). | ||
option("inferSchema", "true").option("delimiter", "\t").csv(trainingDataPath) | ||
|
||
val tBeforePreprocess = System.nanoTime() | ||
var elapsed = (tBeforePreprocess - tStart) / 1000000000.0f // second | ||
log.info("--reading data time is " + elapsed + " s") | ||
// preprocess data | ||
val processedRdd = df.rdd.map(task.rowToLibsvm) | ||
|
||
// declare schema | ||
var structFieldArray = new Array[StructField](feature_nums + 1) | ||
for (i <- 0 to feature_nums) { | ||
structFieldArray(i) = StructField("_c" + i.toString, LongType, true) | ||
} | ||
var schema = new StructType(structFieldArray) | ||
|
||
// convert RDD to RDD[Row] | ||
val rowRDD = processedRdd.map(_.split(" ")).map(row => Row.fromSeq( | ||
for { | ||
i <- 0 to feature_nums | ||
} yield { | ||
row(i).toLong | ||
} | ||
)) | ||
// RDD[Row] to Dataframe | ||
df = spark.createDataFrame(rowRDD, schema) | ||
|
||
|
||
val stringIndexer = new StringIndexer() | ||
.setInputCol("_c0") | ||
.setOutputCol("classIndex") | ||
.fit(df) | ||
val labelTransformed = stringIndexer.transform(df).drop("_c0") | ||
|
||
var inputCols = new Array[String](feature_nums) | ||
for (i <- 0 to feature_nums - 1) { | ||
inputCols(i) = "_c" + (i + 1).toString | ||
} | ||
|
||
val vectorAssembler = new VectorAssembler(). | ||
setInputCols(inputCols). | ||
setOutputCol("features") | ||
|
||
val gbtInput = vectorAssembler.transform(labelTransformed).select("features", "classIndex") | ||
// randomly split dataset to (train, eval1, eval2, test) in proportion 6:2:1:1 | ||
val Array(train, eval1, eval2, test) = gbtInput.randomSplit(Array(0.6, 0.2, 0.1, 0.1)) | ||
|
||
train.cache().count() | ||
eval1.cache().count() | ||
eval2.cache().count() | ||
|
||
val tBeforeTraining = System.nanoTime() | ||
elapsed = (tBeforeTraining - tBeforePreprocess) / 1000000000.0f // second | ||
log.info("--preprocess time is " + elapsed + " s") | ||
// use scala tracker | ||
// val gbtParam = Map("tracker_conf" -> TrackerConf(0L, "scala"), | ||
// "eval_sets" -> Map("eval1" -> eval1, "eval2" -> eval2) | ||
// ) | ||
|
||
// Train a GBT model. | ||
val gbtClassifier = new GBTClassifier() | ||
gbtClassifier.setFeaturesCol("features") | ||
gbtClassifier.setLabelCol("classIndex") | ||
gbtClassifier.setMaxDepth(maxDepth) | ||
gbtClassifier.setMaxIter(maxIter) | ||
gbtClassifier.setFeatureSubsetStrategy("auto") | ||
|
||
// Train model. This also runs the indexer. | ||
val gbtClassificationModel = gbtClassifier.fit(train) | ||
val tAfterTraining = System.nanoTime() | ||
elapsed = (tAfterTraining - tBeforeTraining) / 1000000000.0f // second | ||
log.info("--training time is " + elapsed + " s") | ||
|
||
gbtClassificationModel.write.overwrite().save(modelSavePath) | ||
|
||
val tAfterSave = System.nanoTime() | ||
elapsed = (tAfterSave - tAfterTraining) / 1000000000.0f // second | ||
log.info("--model save time is " + elapsed + " s") | ||
elapsed = (tAfterSave - tStart) / 1000000000.0f // second | ||
log.info("--end-to-end time is " + elapsed + " s") | ||
sc.stop() | ||
} | ||
|
||
val parser: OptionParser[Params] = new OptionParser[Params]("input gbt config") { | ||
opt[String]('i', "trainingDataPath") | ||
.text("trainingData Path") | ||
.action((v, p) => p.copy(trainingDataPath = v)) | ||
.required() | ||
|
||
opt[String]('s', "modelSavePath") | ||
.text("savePath of model") | ||
.action((v, p) => p.copy(modelSavePath = v)) | ||
.required() | ||
|
||
opt[Int]('I', "maxIter") | ||
.text("maxIter") | ||
.action((v, p) => p.copy(maxIter = v)) | ||
|
||
opt[Int]('d', "maxDepth") | ||
.text("maxDepth") | ||
.action((v, p) => p.copy(maxDepth = v)) | ||
|
||
} | ||
} | ||
|